• Injury · Jan 2015

    Titanium mesh as a low-profile alternative for tension-band augmentation in patella fracture fixation: A biomechanical study.

    • Aaron J Dickens, Christina Salas, LeRoy Rise, Cristina Murray-Krezan, Mahmoud Reda Taha, Thomas A DeCoster, and Rick J Gehlert.
    • Department of Orthopaedics and Rehabilitation, The University of New Mexico Health Sciences Center, MSC10 5600, 1 University of New Mexico, Albuquerque, NM 87131, United States. Electronic address: aaronjdickens@gmail.com.
    • Injury. 2015 Jan 1; 46 (6): 1001-6.

    ObjectivesWe performed a simple biomechanical study to compare the fixation strength of titanium mesh with traditional tension-band augmentation, which is a standard treatment for transverse patella fractures. We hypothesised that titanium mesh augmentation is not inferior in fixation strength to the standard treatment.MethodsTwenty-four synthetic patellae were tested. Twelve were fixed with stainless steel wire and parallel cannulated screws. Twelve were fixed with parallel cannulated screws, augmented with anterior titanium mesh and four screws. A custom test fixture was developed to simulate a knee flexed to 90°. A uniaxial force was applied to the simulated extensor mechanism at this angle. A non-inferiority study design was used to evaluate ultimate force required for failure of each construct as a measure of fixation strength. Stiffness of the bone/implant construct, fracture gap immediately prior to failure, and modes of failure are also reported.ResultsThe mean difference in force at failure was -23.0 N (95% CI: -123.6 to 77.6N) between mesh and wire constructs, well within the pre-defined non-inferiority margin of -260 N. Mean stiffness of the mesh and wire constructs were 19.42 N/mm (95% CI: 18.57-20.27 N/mm) and 19.49 N/mm (95% CI: 18.64-20.35 N/mm), respectively. Mean gap distance for the mesh constructs immediately prior to failure was 2.11 mm (95% CI: 1.35-2.88 mm) and 3.87 mm (95% CI: 2.60-5.13 mm) for wire constructs.ConclusionsTitanium mesh augmentation is not inferior to tension-band wire augmentation when comparing ultimate force required for failure in this simplified biomechanical model. Results also indicate that stiffness of the two constructs is similar but that the mesh maintains a smaller fracture gap prior to failure. The results of this study indicate that the use of titanium mesh plating augmentation as a low-profile alternative to tension-band wiring for fixation of transverse patella fractures warrants further investigation.Copyright © 2015 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.