-
IEEE Trans Biomed Eng · Oct 2009
An enhanced automatic algorithm for estimation of respiratory variations in arterial pulse pressure during regions of abrupt hemodynamic changes.
- Mateo Aboy, Cristina Crespo, and Daniel Austin.
- Electrical Engineering Department, Oregon Institute of Technology (OIT), Portland, OR 97006, USA. mateoaboy@ieee.org
- IEEE Trans Biomed Eng. 2009 Oct 1; 56 (10): 2537-45.
AbstractWe describe an improved automatic algorithm to estimate the pulse-pressure-variation (PPV) index from arterial blood pressure (ABP) signals. This enhanced algorithm enables for PPV estimation during periods of abrupt hemodynamic changes. Numerous studies have shown PPV to be one of most specific and sensitive predictors of fluid responsiveness in mechanically ventilated patients. The algorithm uses a beat detection algorithm to perform beat segmentation, kernel smoothers for envelope detection, and a suboptimal Kalman filter for PPV estimation and artifact removal. In this paper, we provide a detailed description of the algorithm and assess its performance on over 40 h of ABP signals obtained from 18 mechanically ventilated crossbred Yorkshire swine. The subjects underwent grade V liver injury after splenectomy, while receiving mechanical ventilation, and general anesthesia with isoflurane. All subjects in the database underwent a period of abrupt hemodynamic change after an induced grade V liver injury involving severe blood loss resulting in hemorrhagic shock, followed by fluid resuscitation with either 0.9% normal saline or lactated ringers solutions. Trained experts manually calculated PPV at five time instances during the period of abrupt hemodynamic changes. We report validation results comparing the proposed algorithm against a commercial system (pulse contour cardiac output, PICCO) with continuous PPV monitoring capabilities. Both systems were assessed during periods of abrupt hemodynamic changes against the "gold-standard" PPV, calculated and manually annotated by experts. Our results indicate that the proposed algorithm performs considerably better than the PICCO system during regions of abrupt hemodynamic changes.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.