• Comput. Aided Surg. · Mar 2008

    Comparative Study

    Electromagnetic navigation improves minimally invasive robot-assisted lung brachytherapy.

    • A W Lin, A L Trejos, S Mohan, H Bassan, A Kashigar, R V Patel, and R A Malthaner.
    • Canadian Surgical Technologies & Advanced Robotics, London, Ontario, Canada.
    • Comput. Aided Surg. 2008 Mar 1; 13 (2): 114-23.

    ObjectiveRecent advances in minimally invasive thoracic surgery have renewed an interest in the role of interstitial brachytherapy for lung cancer. Our previous work has demonstrated that a minimally invasive robot-assisted (MIRA) lung brachytherapy system produced results that were equal to or better than those obtained with standard video-assisted thoracic surgery (VATS) and comparable to results with open surgery. The purpose of this project was to evaluate the performance of an integrated system for MIRA lung brachytherapy that incorporated modified electromagnetic navigation and ultrasound image guidance with robotic assistance.MethodsThe experimental test-bed consisted of a VATS box, ZEUS and AESOP surgical robotic arms, a seed injector, an ultrasound machine, video monitors, a computer, and an endoscope. Our previous custom-designed electromagnetic navigational software and the robotic controller were modified and incorporated into the MIRA III system to become the next-generation MIRA IV. Inactive brachytherapy seeds were injected as close as possible to a small metal ball target embedded in an opaque agar cube. The completion time, the number of attempts, and the accuracy of seed deployment were compared for manual placement, standard VATS, MIRA III, and the new MIRA IV system.ResultsThe MIRA IV system significantly reduced the median procedure time by 61% (104 s to 41 s), tissue trauma by 75% (4 attempts to 1 attempt), and mean seed placement error by 64% (2.5 mm to 0.9 mm) when compared to a standard VATS. MIRA IV also reduced the mean procedure time by 48% (85 s to 44 s) and the seed placement error by 68% (2.8 mm to 0.9 mm) compared to the MIRA III system.ConclusionsA modified integrated system for performing minimally invasive robot-assisted lung brachytherapy was developed that incorporated electromagnetic navigation and an improved robotic controller. The MIRA IV system performed significantly better than standard VATS and better than MIRA III.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.