-
Comparative Study
Real-time measurement of lysis of mural platelet deposits by fibrinolytic agents under arterial flow.
- D A Graham, T C Huang, B A Keyt, and B R Alevriadou.
- Department of Biomedical Engineering, Vascular Bioengineering Laboratory, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
- Ann Biomed Eng. 1998 Jul 1; 26 (4): 712-24.
AbstractAn in vitro whole blood reperfusion model was employed to quantify: (a) initial rates of lysis of mural platelet deposits from flowing blood onto fibrin-coated surfaces and (b) plasmin-mediated consumption of plasma plasminogen and fibrinogen, by recombinant tissue-type plasminogen activator (rt-PA) and two t-PA variants, KHRR 296-299 AAAA (K-tPA) and T103N, N117Q, KHRR 296-299 AAAA (TNK-tPA), at wall shear rates of either 500 or 1000 s(-1). K- and TNK-tPA are more fibrin-specific than rt-PA, and are also resistant to inactivation by plasminogen activator inhibitor-1 (PAI-1). At 500 s(-1), no agent showed significant lysis of mural platelet deposits on fibrin, even at concentrations as high as 10 microg/ml of blood. At 1000 s(-1), each agent demonstrated a dose-dependent lysis of mural platelet deposits, due to plasmin-mediated lysis of the fibrin substrate (fibrinolysis). The local concentration of thrombolytic agents close to the fibrin-coated surface is probably higher than the concentration of released PAI-1 from the adherent and activated platelets. Hence, the initial rates of lysis achieved by K- and TNK-tPA were not significantly different from that by rt-PA, when each agent was tested at either 1 or 10 microg/ml of blood. However, TNK-tPA, at 1 microg/ml, caused the most extensive lysis at the end of the 50 min reperfusion period (50% vs 29% and 17% by rt-PA and K-tPA, respectively). K- and TNK-tPA, at concentrations as high as 10 microg/ml of blood, caused plasminogen activation that was controlled by the natural plasmin inhibitors, and, thus, no proteolytic degradation of plasma fibrinogen (fibrinogenolysis). On the contrary, rt-PA at 1 microg/ml revealed slight fibrinogenolysis that became extensive at 10 microg/ml. This study demonstrates the potential use of an in vitro model, that mimics the in vivo hemodynamic environment, in evaluating the performance of thrombolytic agents. The data suggest that: (a) adequate flow must accompany fibrinolysis for successful embolization, and (b) the TNK variant may lyse annular thrombi after recanalization, at least as efficiently as rt-PA does, while causing lesser defect of systemic hemostasis.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.