• Investigative radiology · Jul 2012

    Normalized metal artifact reduction in head and neck computed tomography.

    • Michael M Lell, Esther Meyer, Michael A Kuefner, Matthias S May, Rainer Raupach, Michael Uder, and Marc Kachelriess.
    • Department of Radiology, University of Erlangen, Erlangen, Germany. michael.lell@uk-erlangen.de
    • Invest Radiol. 2012 Jul 1; 47 (7): 415-21.

    ObjectiveArtifacts from dental hardware affect image quality and the visualization of lesions in the oral cavity and oropharynx in computed tomography (CT). Therefore, magnetic resonance imaging is considered the imaging modality of choice in this region. Standard methods for metal artifact reduction (MAR) in CT replace the metal-affected raw data by interpolation, which is prone to new artifacts. We developed a generalized normalization technique for MAR (NMAR) that aims to suppress algorithm-induced artifacts and validated the performance of this algorithm in a clinical trial.Material And MethodsA 3-dimensional forward projection identifies the metal-affected raw data in the original projections after metal is segmented in the image domain by thresholding. A prior image is used to normalize the projections before interpolation. The original raw data are divided pixel-wise by the projection data of the prior image and, after interpolation, are denormalized again. Data from 19 consecutive patients with metal artifacts from dental hardware were reconstructed with standard filtered backprojection (FBP), linear interpolation MAR (LIMAR), and NMAR. The image quality of slices containing metal was analyzed for the severity of artifacts and diagnostic value; magnetic resonance imaging performed the same day on a 3-T system served as a reference standard in all cases.ResultsA total of 260 slices containing metal dental hardware were analyzed. A total of 164 slices were nondiagnostic with FBP, 157 slices with LIMAR, and 87 slices with NMAR. The mean (SD) number of slices per patient with severe artifacts was 10.1 (3.7), 9.6 (4.6), and 5.4 (3.6) and the mean (SD) number of slices with artifacts affecting diagnostic confidence was 3.3 (1.7), 4.9 (2.9), and 3.7 (1.9) for FBP, LIMAR, and NMAR, respectively (P < 0.001). Pairwise comparison did not show significant differences between FBP and LIMAR (P = 0.40), but there were significant differences between FBP and NMAR as well as LIMAR and NMAR (both P < 0.001). Interobserver agreement was excellent (κ = 0.974). Two malignant lesions were unmasked with NMAR image reconstructions. No algorithm-related artifacts were detected in regions that did not contain metal in NMAR images.ConclusionNormalized MAR has the potential to improve image quality in patients with artifacts from dental hardware and to improve the diagnostic accuracy of CT of the oral cavity and oropharynx.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.