-
- Nobue K Iwata.
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 10, Room 5N226, 10 Center Drive, MSC 1428 Bethesda, MD 20892-1428, USA.
- Brain Nerve. 2007 Oct 1; 59 (10): 1053-64.
AbstractA reliable objective marker of upper motor neuron (UMN) involvement is critical for early diagnosis and monitoring disease course in patients with amyotrophic lateral sclerosis (ALS). Lower motor neuron (LMN) involvement can be identified by electromyography, whereas UMN dysfunction has been currently distinguished solely by neurological examination. In the search for diagnostic tests to evaluate UMN involvement in ALS, numerous reports on new markers using neurophysiological and imaging techniques are accumulating. Transcranial magnetic stimulation evaluates the neurophysiological integrity of UMN. Although the diagnostic reliability and sensitivity of various parameters of central motor conduction measurement differ, central motor conduction time measurement using brainstem stimulation is potentially useful for determining UMN dysfunction by distinguishing lesions above the pyramidal decussation. MR-based techniques also have the potential to be used as diagnostic markers and are continuously improving as a modality to pursue early diagnosis and monitoring of the disease progression. Conventional MRI reveals hyperintensity along the corticospinal tract, hypointensity in the motor cortex, and atrophy of the precentral gyrus. There is a lack of agreement regarding sensitivity and specificity in detecting UMN abnormalities. Recent advances in magnetizing transfer imaging (MTI) provide more sensitive and accurate detection of corticospinal tract abnormality than conventional MRI. Reduction in N-acetyl-aspartate by proton magnetic spectroscopy in the motor cortex or the brainstem of the patients with ALS is reported with different techniques. Its diagnostic value in clinical assessment is uncertain and remains to be established. Diffusion tensor imaging (DTI) reveals the structural integrity of neuronal fibers, and has great diagnostic promise for ALS. It shows reduced diffusion anisotropy in the corticospinal tract with good correlation with physiological index, reflecting UMN pathology. Diffusion tensor tractography allows for visualization and evaluation of corticospinal and corticobulbar tract dysfunction individually in patients with ALS. Although many of these new approaches do not yet reach clinical significance, they have been extensively explored in objective evaluation of upper motor function in patients with ALS. Further investigation is needed to determine and to compare the utility of various neurophysiological and neuroimaging markers.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.