• AACN Adv Crit Care · Jan 2013

    Early metabolic/cellular-level resuscitation following terminal brain stem herniation: implications for organ transplantation.

    • Richard B Arbour.
    • La Salle University and Holy Family University, 5928 N 11th St, Philadelphia, PA 19141, USA. richnrs@aol.com
    • AACN Adv Crit Care. 2013 Jan 1; 24 (1): 59-78.

    AbstractPatients with terminal brain stem herniation experience global physiological consequences and represent a challenging population in critical care practice as a result of multiple factors. The first factor is severe depression of consciousness, with resulting compromise in airway stability and lung ventilation. Second, with increasing severity of brain trauma, progressive brain edema, mass effect, herniation syndromes, and subsequent distortion/displacement of the brain stem follow. Third, with progression of intracranial pathophysiology to terminal brain stem herniation, multisystem consequences occur, including dysfunction of the hypothalamic-pituitary axis, depletion of stress hormones, and decreased thyroid hormone bioavailability as well as biphasic cardiovascular state. Cardiovascular dysfunction in phase 1 is a hyperdynamic and hypertensive state characterized by elevated systemic vascular resistance and cardiac contractility. Cardiovascular dysfunction in phase 2 is a hypotensive state characterized by decreased systemic vascular resistance and tissue perfusion. Rapid changes along the continuum of hyperperfusion versus hypoperfusion increase risk of end-organ damage, specifically pulmonary dysfunction from hemodynamic stress and high-flow states as well as ischemic changes consequent to low-flow states. A pronounced inflammatory state occurs, affecting pulmonary function and gas exchange and contributing to hemodynamic instability as a result of additional vasodilatation. Coagulopathy also occurs as a result of consumption of clotting factors as well as dilution of clotting factors and platelets consequent to aggressive crystalloid administration. Each consequence of terminal brain stem injury complicates clinical management within this patient demographic. In general, these multisystem consequences are managed with mechanism-based interventions within the context of caring for the donor's organs (liver, kidneys, heart, etc.) after death by neurological criteria. These processes begin far earlier in the continuum of injury, at the moment of terminal brain stem herniation. As such, aggressive, mechanism-based care, including hormonal replacement therapy, becomes clinically appropriate before formal brain death declaration to support cardiopulmonary stability following terminal brain stem herniation.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.