• Mod. Pathol. · Nov 2014

    Comparative Study

    Detection of minimal residual disease in NPM1-mutated acute myeloid leukemia by next-generation sequencing.

    • Stephen J Salipante, Jonathan R Fromm, Jay Shendure, Brent L Wood, and David Wu.
    • 1] Departments of Laboratory Medicine, University of Washington, UW Hematopathology Laboratory at SCCA, Seattle, WA, USA [2] Genome Sciences, University of Washington, Seattle, WA, USA.
    • Mod. Pathol. 2014 Nov 1; 27 (11): 1438-46.

    AbstractDetection of minimal residual disease predicts adverse outcome in patients with acute myeloid leukemia. Currently, minimal residual disease may be detected by RQ-PCR or flow cytometry, both of which have practical and diagnostic limitations. Here, we describe a next-generation sequencing assay for minimal residual disease detection in NPM1-mutated acute myeloid leukemia, which encompasses ∼60% of patients with normal karyotype acute myeloid leukemia. Exon 12 of NPM1 was PCR amplified using sequencing adaptor-linked primers and deep sequenced to enable detection of low-prevalence, acute myeloid leukemia-specific activating mutations. We benchmarked our results against flow cytometry, the standard of care for acute myeloid leukemia minimal residual disease diagnosis at our institution. The performance of both approaches was evaluated using defined dilutions of an NPM1 mutation-positive cell line and longitudinal clinical samples from acute myeloid leukemia patients. Using defined control material, we found this assay sensitive to approximately 0.001% mutant cells, outperforming flow cytometry by an order of magnitude. Next-generation sequencing was precise and semiquantitative over four orders of magnitude. In 22 longitudinal samples from six acute myeloid leukemia patients, next-generation sequencing detected minimal residual disease in all samples deemed negative by flow cytometry. Further, in one-third of patients, sequencing detected alternate NPM1 mutations in addition to the patient's index mutation, consistent with tumor heterogeneity. Next-generation sequencing provides information without prior knowledge of NPM1 mutation subtype or validation of allele-specific probes as required for RQ-PCR assays, and without generation and interpretation of complex multidimensional flow cytometry data. This approach may complement current technologies to enhance patient-specific clinical decision-making.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.