• Med Decis Making · Nov 2005

    Estimation of markov chain transition probabilities and rates from fully and partially observed data: uncertainty propagation, evidence synthesis, and model calibration.

    • Nicky J Welton and A E Ades.
    • MRC Health Services Research Collaboration, Bristol, United Kingdom. nicky.welton@bristol.ac.uk
    • Med Decis Making. 2005 Nov 1; 25 (6): 633-45.

    AbstractMarkov transition models are frequently used to model disease progression. The authors show how the solution to Kolmogorov's forward equations can be exploited to map between transition rates and probabilities from probability data in multistate models. They provide a uniform, Bayesian treatment of estimation and propagation of uncertainty of transition rates and probabilities when 1) observations are available on all transitions and exact time at risk in each state (fully observed data) and 2) observations are on initial state and final state after a fixed interval of time but not on the sequence of transitions (partially observed data). The authors show how underlying transition rates can be recovered from partially observed data using Markov chain Monte Carlo methods in WinBUGS, and they suggest diagnostics to investigate inconsistencies between evidence from different starting states. An illustrative example for a 3-state model is given, which shows how the methods extend to more complex Markov models using the software WBDiff to compute solutions. Finally, the authors illustrate how to statistically combine data from multiple sources, including partially observed data at several follow-up times and also how to calibrate a Markov model to be consistent with data from one specific study.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…