• J Neurosurg Spine · Oct 2011

    Time course investigation of intervertebral disc degeneration produced by needle-stab injury of the rat caudal spine: laboratory investigation.

    • Huina Zhang, Sushan Yang, Lin Wang, Paul Park, Frank La Marca, Scott J Hollister, and Chia-Ying Lin.
    • Spine Research Laboratory, Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA.
    • J Neurosurg Spine. 2011 Oct 1; 15 (4): 404-13.

    ObjectIn this study, the authors' goal was to investigate the long-term progression of disc degeneration and the participating mechanisms induced by needle puncture in a rat caudal disc model.MethodsThe C5-6 and C7-8 intervertebral discs of the caudal spine in rats were stabbed laterally using 21-gauge hypodermic needles to a depth of 5 mm from the subcutaneous surface with the aid of fluoroscopy. Signs of degeneration in the disc of the tail were analyzed from Day 1 to Week 30 by in vivo MR imaging, histology, and biochemical and/or molecular analyses.ResultsMagnetic resonance imaging showed a progressive decrease in T2 density and MR imaging index throughout the entire investigation, starting at Day 1 after the needle puncture. However, histological scores revealed a bimodal pattern, showing that severity increased in the first 17 days, declined thereafter, and increased again by 30 weeks. Gene expression analysis showed a transient up-regulation in gene expression of aggrecan, type II collagen, and BMP-2, and inhibition of type I collagen. The MMP-3 mRNA levels were up-regulated at all tested time points within 6 weeks postinjury. Furthermore, the degenerated disc did not recover spontaneously, as shown by decreases in T2 density, MR imaging index, and sulfated glycosaminoglycan content in conjunction with increases in histological scores at 15 and 30 weeks postsurgery.ConclusionsThis study demonstrates that needle puncture into a tail disc in the rat induces a rapid and progressive disc degeneration process without spontaneous recovery. Changes in gene expression profiles of the disc matrix molecules as well as anabolic and catabolic factors at early time points further delineate the mechanism of disc degeneration in this newly developed animal model.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…