• Microvascular research · Jun 2009

    Electrokinetic effect of the endothelial glycocalyx layer on two-phase blood flow in small blood vessels.

    • Mei Liu and Jun Yang.
    • Department of Mechanical and Materials Engineering, University of Western Ontario, London, Canada.
    • Microvasc. Res. 2009 Jun 1; 78 (1): 14-9.

    AbstractBlood flow behaves differently at the microvascular level than they do at upper levels of circulating systems. The endothelial glycocalyx layer on the luminal surface of blood vessels plays a significant role in regulating blood flow and blood cell movement in microvascular networks. For instance, previous experimental studies showed that the endothelial glycocalyx layer causes additional resistance to blood flow in small blood vessels. One of the important facts of the endothelial glycocalyx layer is that this layer is highly negatively charged. The question remains: do these electrostatic charges retard blood flow in small blood vessels according to the electroviscous effect? Here, a theoretical model is proposed to investigate the electrochemical effects of the endothelial glycocalyx layer on two-phase non-Newtonian blood flow in small blood vessels. Results show that electrostatic charges on the endothelial glycocalyx layer induce negligible effect to blood flow. Therefore, we can attribute the cause of additional resistance by the endothelial glycocalyx layer mainly to other mechanisms, such as, the glycocalyx constituted proteins acting as a flow barrier.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.