• Cerebral cortex · Jun 2008

    Comparative Study

    Activity-dependent regulation of neuronal apoptosis in neonatal mouse cerebral cortex.

    • Nicolas Heck, Antje Golbs, Therese Riedemann, Jyh-Jang Sun, Volkmar Lessmann, and Heiko J Luhmann.
    • Institute of Physiology and Pathophysiology, University of Mainz, Duesbergweg 6, D-55128 Mainz, Germany.
    • Cereb. Cortex. 2008 Jun 1; 18 (6): 1335-49.

    AbstractA massive neuronal loss during early postnatal development has been well documented in the murine cerebral cortex, but the factors that drive cells into apoptosis are largely unknown. The role of neuronal activity in developmental apoptosis was studied in organotypic neocortical slice cultures of newborn mice. Multielectrode array and whole-cell patch-clamp recordings revealed spontaneous network activity characterized by synchronized burst discharges, which could be blocked by tetrodotoxin and ionotropic glutamate receptor antagonists. The identical neuropharmacological manipulations also caused a significant increase in the number of apoptotic neurons as early as 6 h after the start of drug treatment. Moreover, inhibition of the NMDA receptor subunit NR2A or NR2B induced a differential short-term versus delayed increase in the apoptosis rate, respectively. Activation of L-type, voltage-dependent calcium channels was neuroprotective and could prevent activity-dependent apoptosis during NMDA receptor blockade. Furthermore, this effect involved phosphorylation of cAMP response element-binding protein and activation of the tropomyosin-related kinase (Trk) receptors. Inhibition of electrical synapses and blockade of ionotropic gamma-aminobutyric acid receptors induced specific changes in spontaneous electrical activity patterns, which caused an increase in caspase-3-dependent cell death. Our results demonstrate that synchronized spontaneous network bursts activating ionotropic glutamate receptors promote neuronal survival in the neonatal mouse cerebral cortex.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…