• Exp. Biol. Med. (Maywood) · Apr 2010

    Model-derived assessment of cerebrovascular resistance and cerebral blood flow following traumatic brain injury.

    • Michael L Daley, Nithya Narayanan, and Charles W Leffler.
    • Department of Electrical and Computer Engineering, The University of Memphis, Engineering Science Building, Memphis, TN 38152-3180, USA.
    • Exp. Biol. Med. (Maywood). 2010 Apr 1; 235 (4): 539-45.

    AbstractThe published guidelines point out the need for the development of methods that individualize patient cerebral perfusion management and minimize secondary ischemic complications associated with traumatic brain injury. A laboratory method has been developed to determine model-derived assessments of cerebrovascular resistance (mCVR) and cerebral blood flow (mCBF) from cerebrovascular pressure transmission, and the dynamic relationship between arterial blood pressure (ABP) and intracranial pressure (ICP). The aim of this two-fold study is to (1) evaluate relative changes in the model-derived parameters of mCVR and mCBF with the corresponding changes in the pial arteriolar vascular parameters of pial arteriolar resistance (PAR) and relative pial arteriolar blood flow (rPABF); and (2) examine the efficacy of the proposed modeling methodology for continuous assessment of the state of cerebrovascular regulation by evaluating relative changes in the model-derived parameters of CBF and cerebrovascular resistance in relation to changes of cerebral perfusion pressure prior to and following fluid percussion brain injury. Changes of ABP, ICP, PAR, relative arteriolar blood flow (rPABF) and the corresponding model-derived parameters of mCBF and mCVR induced by acute hypertensive challenge were evaluated before and following fluid percussion injury in piglets equipped with cranial windows. Before fluid percussion, hypertensive challenge resulted in a significant increase of PAR and mCVR, whereas both rPABF and mCBF remained constant. Following fluid percussion, hypertensive challenge resulted in a significant decrease of PAR and mCVR and consistent with impaired cerebrovascular regulation. Hypertensive challenge significantly increased both rPABF and mCBF, which approximately doubled with increased CPP with correlation values of r = 0.96 (P < 0.01) and r = 0.97 (P

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.