-
Statistics in medicine · Jul 2012
Model misspecification and robustness in causal inference: comparing matching with doubly robust estimation.
- Ingeborg Waernbaum.
- Department of Statistics, Umeå University, S-90187, Umeå, Sweden. ingeborg.waernbaum@stat.umu.se
- Stat Med. 2012 Jul 10; 31 (15): 1572-81.
AbstractIn this paper, we compare the robustness properties of a matching estimator with a doubly robust estimator. We describe the robustness properties of matching and subclassification estimators by showing how misspecification of the propensity score model can result in the consistent estimation of an average causal effect. The propensity scores are covariate scores, which are a class of functions that removes bias due to all observed covariates. When matching on a parametric model (e.g., a propensity or a prognostic score), the matching estimator is robust to model misspecifications if the misspecified model belongs to the class of covariate scores. The implication is that there are multiple possibilities for the matching estimator in contrast to the doubly robust estimator in which the researcher has two chances to make reliable inference. In simulations, we compare the finite sample properties of the matching estimator with a simple inverse probability weighting estimator and a doubly robust estimator. For the misspecifications in our study, the mean square error of the matching estimator is smaller than the mean square error of both the simple inverse probability weighting estimator and the doubly robust estimators.Copyright © 2012 John Wiley & Sons, Ltd.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.