• IEEE Trans Neural Syst Rehabil Eng · May 2012

    Relationship between clinical assessments of function and measurements from an upper-limb robotic rehabilitation device in cervical spinal cord injury.

    • José Zariffa, Naaz Kapadia, John L K Kramer, Philippa Taylor, Milad Alizadeh-Meghrazi, Vera Zivanovic, Urs Albisser, Rhonda Willms, Andrea Townson, Armin Curt, Milos R Popovic, and John D Steeves.
    • International Collaboration On Repair Discoveries, Vancouver, BC, V5Z 1M9 Canada. jose.zariffa@utoronto.ca
    • IEEE Trans Neural Syst Rehabil Eng. 2012 May 1; 20 (3): 341-50.

    AbstractUpper limb robotic rehabilitation devices can collect quantitative data about the user's movements. Identifying relationships between robotic sensor data and manual clinical assessment scores would enable more precise tracking of the time course of recovery after injury and reduce the need for time-consuming manual assessments by skilled personnel. This study used measurements from robotic rehabilitation sessions to predict clinical scores in a traumatic cervical spinal cord injury (SCI) population. A retrospective analysis was conducted on data collected from subjects using the Armeo Spring (Hocoma, AG) in three rehabilitation centers. Fourteen predictive variables were explored, relating to range-of-motion, movement smoothness, and grip ability. Regression models using up to four predictors were developed to describe the following clinical scores: the GRASSP (consisting of four sub-scores), the ARAT, and the SCIM. The resulting adjusted R(2) value was highest for the GRASSP "Quantitative Prehension" component (0.78), and lowest for the GRASSP "Sensibility" component (0.54). In contrast to comparable studies in stroke survivors, movement smoothness was least beneficial for predicting clinical scores in SCI. Prediction of upper-limb clinical scores in SCI is feasible using measurements from a robotic rehabilitation device, without the need for dedicated assessment procedures.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.