• J. Comp. Neurol. · Nov 1994

    Comparative Study

    Directionally specific changes in arterial pressure induce differential patterns of fos expression in discrete areas of the rat brainstem: a double-labeling study for Fos and catecholamines.

    • A Z Murphy, M Ennis, M T Shipley, and M M Behbehani.
    • Department of Physiology, University of Cincinnati College of Medicine, Ohio 45267.
    • J. Comp. Neurol. 1994 Nov 1; 349 (1): 36-50.

    AbstractAlthough the nucleus tractus solitarii (NTS) has been established as the primary site of synaptic integration for the baroreceptor reflex, the higher-order pathways responsive to, and mediating, changes in vasomotor tone are not well characterized. We used immunohistochemistry to determine the distribution of cells expressing the Fos protein following pharmacologically induced, directionally specific changes in arterial pressure. The goal of this investigation was to determine if this immediate early gene product is differentially expressed in neurons of the rat brainstem following increased (pressor) versus decreased (depressor) arterial blood pressure (AP). Because brainstem catecholaminergic (CA) cell groups have been implicated in cardiovascular regulation, a double-labeling immunohistochemical procedure was used to examine the distribution of Fos in CA cells. Animals received continuous intravenous infusion of either a vasoconstrictor (l-phenylephrine hydrochloride), a vasodilator (sodium nitroprusside), or physiological saline. Extensive Fos-like immunoreactivity (FLI) was induced in both the pressor and depressor conditions in the NTS, caudal ventrolateral medulla (CVLM), rostral ventrolateral medulla (RVLM), A5, locus coeruleus (LC), Kolliker-Fuse, and parabrachial nucleus (PBN). These regions have all been implicated in central cardiovascular regulation. There were differences in the anatomical distribution of Fos-positive cells along the rostrocaudal axis of CVLM in the pressor and depressor conditions. Specifically, increased AP induced significantly more FLI cells within the rostral aspects of CVLM, whereas decreased AP resulted in a significantly greater number of FLI cells within the caudal CVLM. This result suggests that selective vasomotor responses differentially engaged discrete subsets of neurons within this brainstem region. Overall, approximately 50% of CA-immunoreactive cells were also FLI (CA-FLI) in the A1, A5, and A7 regions. Interestingly, increased AP produced significantly more CA-FLI double-labeled cells within the caudal than rostral A1 compared with depressor and control groups. Additionally, increased AP yielded significantly less CA-FLI double-labeled cells within the caudal A2 region. This suggests that CA barosensitive neurons in the CVLM/A1 and NTS/A2 regions are functionally segregated along the rostrocaudal axis of these structures. While twice as many PNMT-FLI double-labeled neurons were found in the C1-C3 regions following vasomotor changes versus saline control, there were no differences in the numbers or anatomical locations of labeled cells between pressor versus depressor groups. The results of this study indicate that (1) tonic changes in AP induce robust Fos expression in brainstem cardiovascular areas and (2) neurons responsive to specific directional changes in arterial pressure are segregated in some brainstem regions.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.