• Am. J. Physiol., Cell Physiol. · Nov 2012

    Maxi-anion channel and pannexin 1 hemichannel constitute separate pathways for swelling-induced ATP release in murine L929 fibrosarcoma cells.

    • Md Rafiqul Islam, Hiromi Uramoto, Toshiaki Okada, Ravshan Z Sabirov, and Yasunobu Okada.
    • Dept. of Cell Physiology, National Institute for Physiological Sciences, Myodaiji-cho, Okazaki 444-8585, Japan.
    • Am. J. Physiol., Cell Physiol. 2012 Nov 1; 303 (9): C924-35.

    AbstractThe maxi-anion channel plays a classically recognized role in controlling the membrane potential through the chloride conductance. It also has novel functions as a regulated pathway for the release of the anionic signaling molecules ATP and excitatory amino acids from cells subjected to osmotic perturbation, ischemia, or hypoxia. Because hemichannels formed by pannexins and connexins have been reported to mediate ATP release from a number of cell types, these hemichannels may represent the molecular correlate of the maxi-anion channel. Here, we found that L929 fibrosarcoma cells express functional maxi-anion channels which mediate a major portion of swelling-induced ATP release, and that ATP released via maxi-anion channels facilitates the regulatory volume decrease after osmotic swelling. Also, it was found that the cells express the mRNA for pannexin 1, pannexin 2, and connexin 43. Hypotonicity-induced ATP release was partially suppressed not only by known blockers of the maxi-anion channel but also by several blockers of pannexins including the pannexin 1-specific blocking peptide (10)Panx1 and small interfering (si)RNA against pannexin 1 but not pannexin 2. The inhibitory effects of maxi-anion channel blockers and pannexin 1 antagonists were additive. In contrast, maxi-anion channel activity was not affected by pannexin 1 antagonists and siRNAs against pannexins 1 and 2. Although a connexin 43-specific blocking peptide, Gap27, slightly suppressed hypotonicity-induced ATP release, maxi-anion channel activity was not affected by Gap27 or connexin 43-specific siRNA. Thus, it is concluded that the maxi-anion channel is a molecular entity distinct from pannexin 1, pannexin 2, and connexin 43, and that the maxi-anion channel and the hemichannels constitute separate pathways for swelling-induced ATP release in L929 cells.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.