• Journal of neurotrauma · Jan 2017

    Review

    Glutamate neurotransmission in rodent models of traumatic brain injury.

    • Christopher R Dorsett, Jennifer L McGuire, Erica A K DePasquale, Amanda E Gardner, Candace L Floyd, and Robert E McCullumsmith.
    • 1 Biological and Biomedical Sciences Doctoral Program, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina.
    • J. Neurotrauma. 2017 Jan 15; 34 (2): 263-272.

    AbstractTraumatic brain injury (TBI) is a leading cause of death and disability in people younger than 45 and is a significant public health concern. In addition to primary mechanical damage to cells and tissue, TBI involves additional molecular mechanisms of injury, termed secondary injury, that continue to evolve over hours, days, weeks, and beyond. The trajectory of recovery after TBI is highly unpredictable and in many cases results in chronic cognitive and behavioral changes. Acutely after TBI, there is an unregulated release of glutamate that cannot be buffered or cleared effectively, resulting in damaging levels of glutamate in the extracellular space. This initial loss of glutamate homeostasis may initiate additional changes in glutamate regulation. The excitatory amino acid transporters (EAATs) are expressed on both neurons and glia and are the principal mechanism for maintaining extracellular glutamate levels. Diffusion of glutamate outside the synapse due to impaired uptake may lead to increased extrasynaptic glutamate signaling, secondary injury through activation of cell death pathways, and loss of fidelity and specificity of synaptic transmission. Coordination of glutamate release and uptake is critical to regulating synaptic strength, long-term potentiation and depression, and cognitive processes. In this review, we will discuss dysregulation of extracellular glutamate and glutamate uptake in the acute stage of TBI and how failure to resolve acute disruptions in glutamate homeostatic mechanisms may play a causal role in chronic cognitive symptoms after TBI.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.