• Respir Physiol Neurobiol · Mar 2012

    Rapid intravenous infusion of 20 mL/kg saline alters the distribution of perfusion in healthy supine humans.

    • A C Henderson, R C Sá, I A Barash, S Holverda, R B Buxton, S R Hopkins, and G K Prisk.
    • Division of Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0623, United States. achenderson@ucsd.edu
    • Respir Physiol Neurobiol. 2012 Mar 15; 180 (2-3): 331-41.

    AbstractRapid intravenous saline infusion, a model meant to replicate the initial changes leading to pulmonary interstitial edema, increases pulmonary arterial pressure in humans. We hypothesized that this would alter lung perfusion distribution. Six healthy subjects (29 ± 6 years) underwent magnetic resonance imaging to quantify perfusion using arterial spin labeling. Regional proton density was measured using a fast-gradient echo sequence, allowing blood delivered to the slice to be normalized for density and quantified in mL/min/g. Contributions from flow in large conduit vessels were minimized using a flow cutoff value (blood delivered > 35% maximum in mL/min/cm(3)) in order to obtain an estimate of blood delivered to the capillary bed (perfusion). Images were acquired supine at baseline, after infusion of 20 mL/kg saline, and after a short upright recovery period for a single sagittal slice in the right lung during breath-holds at functional residual capacity. Thoracic fluid content measured by impedance cardiography was elevated post-infusion by up to 13% (p<0.0001). Forced expiratory volume in 1s was reduced by 5.1% post-20 mL/kg (p=0.007). Infusion increased perfusion in nondependent lung by up to 16% (6.4 ± 1.6 mL/min/g baseline, 7.3 ± 1.8 post, 7.4 ± 1.7 recovery, p=0.03). Including conduit vessels, blood delivered in dependent lung was unchanged post-infusion; however, was increased at recovery (9.4 ± 2.7 mL/min/g baseline, 9.7 ± 2.0 post, 11.3 ± 2.2 recovery, p=0.01). After accounting for changes in conduit vessels, there were no significant changes in perfusion in dependent lung following infusion (7.8 ± 1.9 mL/min/g baseline, 7.9 ± 2.0 post, 8.5 ± 2.1 recovery, p=0.36). There were no significant changes in lung density. These data suggest that saline infusion increased perfusion to nondependent lung, consistent with an increase in intravascular pressures. Dependent lung may have been "protected" from increases in perfusion following infusion due to gravitational compression of the pulmonary vasculature.Copyright © 2011 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…