• Pain · Aug 2015

    Inhibition of the Mammalian Target of Rapamycin Complex 1 (mTORC1) signaling pathway reduces itch behaviour in mice.

    • Ilona Obara, Maria C Medrano, Jérémy Signoret-Genest, Lydia Jiménez-Díaz, Sandrine M Géranton, and Stephen P Hunt.
    • Department of Cell and Developmental Biology, University College London, London, United Kingdom School of Medicine, Pharmacy and Health, Durham University, Stockton-on-Tees, United Kingdom Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Bizkaia, Spain Laboratorio de Neurofisiología y Comportamiento, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha, Castilla-La Mancha, Spain.
    • Pain. 2015 Aug 1; 156 (8): 1519-1529.

    AbstractActivated mammalian target of rapamycin (P-mTOR) has been shown to maintain the sensitivity of subsets of small-diameter primary afferent A-nociceptors. Local or systemic inhibition of the mTOR complex 1 (mTORC1) pathway reduced punctate mechanical and cold sensitivity in neuropathic pain and therefore offered a new approach to chronic pain control. In this study, we have investigated the effects of the rapamycin analog temsirolimus (CCI-779) on itch. Bouts of scratching induced by the histamine-dependent pruritogenic compound 48/80 and histamine-independent pruritogens, chloroquine and SLIGRL-NH2, injected intradermally were significantly reduced by local (intradermal) or systemic (intraperitoneal, i.p.) pretreatment with CCI-779. We also investigated the action of metformin, a drug taken to control type 2 diabetes and recently shown to inhibit mTORC1 in vivo. Although the response to nonhistaminergic stimuli was reduced at all of the time points tested, scratching to compound 48/80 was modified by metformin only when the drug was injected 24 hours before this pruritogen. We also examined the colocalization of P-mTOR with gastrin-releasing peptide, a putative marker for some itch-sensitive primary afferents, and found that P-mTOR was coexpressed in less than 5% of gastrin-releasing peptide-positive fibers in the mouse skin. Taken together, the data highlight the role that P-mTOR-positive A-fibers play in itch signaling and underline the importance of the mTORC1 pathway in the regulation of homeostatic primary afferent functions such as pain and itch. The actions of the antidiabetic drug metformin in ameliorating nonhistamine-mediated itch also suggest a new therapeutic route for the control of this category of pruritus.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.