-
Nihon Eiseigaku Zasshi · Sep 2009
[Causal inference in medicine part I--counterfactual models--an approach to clarifying discussions in research and applied public health].
- Etsuji Suzuki, Hirokazu Komatsu, Takashi Yorifuji, Eiji Yamamoto, Hiroyuki Doi, and Toshihide Tsuda.
- Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Shikatacho, Kita-ku, Okayama, Japan. etsuji-s@cc.okayama-u.ac.jp
- Nihon Eiseigaku Zasshi. 2009 Sep 1; 64 (4): 786-95.
AbstractA central problem in natural science is identifying general laws of cause and effect. Medical science is devoted to revealing causal relationships in humans. The framework for causal inference applied in epidemiology can contribute substantially to clearly specifying and testing causal hypotheses in many other areas of biomedical research. In this article, we review the importance of defining explicit research hypotheses to make valid causal inferences in medical studies. In the counterfactual model, a causal effect is defined as the contrast between an observed outcome and an outcome that would have been observed in a situation that did not actually happen. The fundamental problem of causal inference should be clear; individual causal effects are not directly observable, and we need to find general causal relationships, using population data. Under an "ideal" randomized trial, the assumption of exchangeability between the exposed and the unexposed groups is met; consequently, population-level causal effects can be estimated. In observational studies, however, there is a greater risk that the assumption of conditional exchangeability may be violated. In summary, in this article, we highlight the following points: (1) individual causal effects cannot be inferred because counterfactual outcomes cannot, by definition, be observed; (2) the distinction between concepts of association and concepts of causation and the basis for the definition of confounding; (3) the importance of elaborating specific research hypotheses in order to evaluate the assumption of conditional exchangeability between the exposed and unexposed groups; (4) the advantages of defining research hypotheses at the population level, including specification of a hypothetical intervention, consistent with the counterfactual model. In addition, we show how understanding the counterfactual model can lay the foundation for correct interpretation of epidemiologic evidence.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.