• Behav. Brain Res. · Mar 2002

    Review

    Peculiar response of adolescent mice to acute and chronic stress and to amphetamine: evidence of sex differences.

    • Giovanni Laviola, Walter Adriani, Sara Morley-Fletcher, and Maria Livia Terranova.
    • Section of Behavioral Pathophysiology, Lab Fisiopatologia O.S., Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Rome, Italy. laviola@iss.it
    • Behav. Brain Res. 2002 Mar 10; 130 (1-2): 117-25.

    AbstractAlthough final brain size and the number of available neurons and axons appear to be established early in infancy, plasticity of the brain continues during adolescence through an integrated process of overproduction and elimination of synapses and receptors. In addition, hormonal levels change dramatically during this period, as a result of the onset of puberty. This age-specific condition has been suggested to serve as a permissive factor for the emergence of a number of early-onset neuropsychiatric disorders, including schizophrenia, attention-deficit hyperactivity disorder (ADHD), and perhaps substance abuse. However, relatively few investigations have focused on animal models of this developmental phase. The periadolescent rodent (similar30-45-day-old), has been proposed as a useful model. Periadolescent rats and mice are generally associated with a peculiar behavioral profile, consisting of basal hyperactivity, high attraction towards novel stimuli and a marked involvement in affiliative and playful behaviors. Moreover, a unique profile of psychopharmacological responsivity characterizes rodents around this age. Recent experiments by our group investigated age-related discontinuities in the response of the hypothalamic-pituitary-adrenal axis (HPA) to both stress and psychostimulants. The latter are often administered as therapeutic drugs to children with ADHD, which have been also associated with an impaired response to stress and abnormalities in HPA axis function. Indeed, an altered functioning of the HPA axis has been proposed as a possible risk factor and a potential marker for such a behavioral vulnerability. Animals were studied at adulthood (> pnd 70) or during periadolescence. Experiment I characterized basal corticosterone (CORT) levels in naive mice kept undisturbed in standard social conditions from weaning to sacrifice. Periadolescent male mice showed higher basal CORT levels than adult subjects, suggesting that the set up of the HPA axis is physiologically elevated during adolescence. In experiment II, we investigated age-related differences in the response to both acute and chronic stress conditions. Periadolescent and adult mice were housed either in a standard (three animals per cage) or in a crowding condition (nine animals per cage). The latter has been indeed reported to potentiate the subsequent reaction to acute stress in adult rodents. At the end of this period and following 24 h individual housing, mice were injected with either saline (SAL) or a standard amphetamine (AMPH) dose (2 mg/kg), and faced with a mild acute psychological stress, namely removal of sawdust from the home cage. Important sex differences emerged in animals of the two ages. Periadolescent females showed a reduced CORT response to acute stress. Within the adult male group, the chronic crowding condition produced a prominent potentiation of CORT response to the acute stress challenge. Conversely, this profile was not evidenced in periadolescents. These results indicate a strong role for gender and social variables in the response of periadolescent subjects to the various aspects of stress. As for AMPH effects, in the absence of significant changes in adult subjects, the drug produced a marked CORT release in periadolescent mice. A better understanding of neuroendocrine-related AMPH effects as a function of social and environmental risk factors during adolescence, might deepen our knowledge on the neurobiological bases of genetically determined neuropsichiatric disorders and possibly improve the therapeutical efficacy of psychostimulant drugs.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.