• Neural Regen Res · Dec 2013

    Does diffusion tensor data reflect pathological changes in the spinal cord with chronic injury.

    • Erjian Lin, Houqing Long, Guangsheng Li, and Wanlong Lei.
    • Department of Radiology, the Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, Guangdong Province, China.
    • Neural Regen Res. 2013 Dec 25; 8 (36): 3382-90.

    AbstractMagnetic resonance diffusion tensor imaging has been shown to quantitatively measure the early pathological changes in chronic cervical spondylotic myelopathy. In this study, a novel spongy polyurethane material was implanted in the rat C3-5 epidural space to establish a rat model of chronic cervical spondylotic myelopathy. Diffusion tensor data were used to predict pathological changes. Results revealed that the fractional anisotropy value gradually decreased at 4, 24, and 72 hours and 1 week after injury in rat spinal cord, showing a time-dependent manner. Average diffusion coefficient increased at 72 hours and 1 week after implantation. Hematoxylin-eosin staining and Luxol-fast-blue staining exhibited that the number of neurons in the anterior horn of the spinal cord gray matter and the nerve fiber density of the white matter gradually reduced with prolonged compression time. Neuronal loss was most significant at 1 week after injury. Results verified that the fractional anisotropy value and average diffusion coefficient reflected the degree of pathological change in the site of compression in rat models at various time points after chronic spinal cord compression injury, which potentially has a reference value in the early diagnosis of chronic cervical spondylotic myelopathy.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.