• AJNR Am J Neuroradiol · Mar 2016

    Using Body Mass Index to Predict Needle Length in Fluoroscopy-Guided Lumbar Punctures.

    • A P Nayate, I M Nasrallah, J E Schmitt, and S Mohan.
    • From the Department of Radiology, Division of Neuroradiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania.
    • AJNR Am J Neuroradiol. 2016 Mar 1; 37 (3): 572-8.

    Background And PurposePredicting the appropriate needle length to use in oblique interlaminar-approach fluoroscopy-guided lumbar punctures in patients with a large body mass index is difficult. Using the wrong needle length can lead to an increased radiation dose and patient discomfort. We hypothesized that body mass index could help determine the appropriate needle length to use in patients.Materials And MethodsWe randomly selected patients who underwent oblique interlaminar-approach fluoroscopy-guided lumbar punctures and had cross-sectional imaging of the lumbar spine within 1 year of imaging (n = 50). The distance from the skin to the midlumbar spinal canal (skin-canal distance) at the level of the lumbar puncture was measured by using an oblique angle of 8.6°, which is an average of angles most often used to perform the procedure. A formula was devised using the skin-canal distance and body mass index to predict the appropriate needle length, subsequently confirmed in 45 patients.ResultsThe body mass index and skin-canal distance were significantly higher (P < .001) in patients who underwent fluoroscopy-guided lumbar puncture with 5- or 7-inch needles (n = 22) than in patients requiring 3.5-inch needles (n = 28). Using linear regression, we determined the formula to predict the needle length as Skin-Canal Distance (inches) = 0.077 × Body Mass Index + 0.88. We found a strong correlation (P < .001) between the predicted and actual skin canal distance in 45 patients, and our formula better predicted the skin-canal distance than others.ConclusionsWe designed a formula that uses body mass index to predict the appropriate needle length in oblique interlaminar-approach fluoroscopy-guided lumbar punctures and validated it by demonstrating a strong correlation between the predicted and actual skin-canal distance.© 2016 by American Journal of Neuroradiology.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.