• Pain · Dec 2006

    Differential contribution of TRPV1 to thermal responses and tissue injury-induced sensitization of dorsal horn neurons in laminae I and V in the mouse.

    • W A Eckert, D Julius, and A I Basbaum.
    • Department of Anatomy, W.M. Keck Foundation Center for Integrative Neuroscience, University of California at San Francisco, San Francisco, CA 94143, USA. weckert@inspirepharm.com
    • Pain. 2006 Dec 15; 126 (1-3): 184-97.

    AbstractOur previous recordings from dorsal root ganglion and spinal lamina V neurons from TRPV1-mutant mice showed dramatic decreases in responses to temperatures near the activation threshold of this channel (43-49 degrees C). Somewhat unexpectedly, we only observed behavioral deficits in these mice at higher temperatures (50-58 degrees C). In the present study, we tested the hypothesis that the noxious heat-evoked pain behavior that persists in TRPV1-mutant mice reflects residual responsiveness of neurons in the superficial, but not deep, dorsal horn. To this end, we performed in vivo extracellular recordings of spinal nociresponsive neurons in laminae I and V in wild type (WT) and TRPV1 mutant mice. Neurons in WT and mutant mice from both laminae did not differ in their spontaneous activity or evoked responses to mechanical or cold stimuli. By contrast, most lamina I neurons from mutant mice responded to noxious heat with significantly higher thresholds than in WT mice. In contrast, lamina V neurons from mutant mice were virtually unresponsive to noxious heat before and after topical mustard oil-induced tissue injury. Interestingly, lamina I neurons in mutant mice displayed thermal sensitization following tissue injury, comparable in magnitude, but of shorter duration, than in WT mice. We conclude that TRPV1 is necessary for noxious heat-evoked responses of lamina V neurons, both before and after tissue injury. It is also an essential contributor to the normal activation threshold of lamina I neurons to noxious heat and for the full duration of thermal sensitization of lamina I neurons following injury. Finally, our results suggest that the processing of noxious thermal messages by neurons in lamina I involves convergent inputs from a heterogeneous population of primary afferent thermal nociceptors.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.