• Journal of biomechanics · Feb 2015

    Comparative Study

    Quantitative measures of sagittal plane head-neck control: a test-retest reliability study.

    • John M Popovich, N Peter Reeves, M Cody Priess, Jacek Cholewicki, Jongeun Choi, and Clark J Radcliffe.
    • MSU Center for Orthopedic Research, College of Osteopathic Medicine, Michigan State University, Lansing, MI, USA; Department of Osteopathic Surgical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA. Electronic address: popovi16@msu.edu.
    • J Biomech. 2015 Feb 5; 48 (3): 549-54.

    AbstractDetermining the reliability of measurements used to quantify head-neck motor control is necessary before they can be used to study the effects of injury or treatment interventions. Thus, the purpose of this study was to determine the within- and between-day reliability of position tracking, position stabilization and force tracking tasks to quantify head-neck motor control. Ten asymptomatic subjects performed these tasks on two separate days. Position and force tracking tasks required subjects to track a pseudorandom square wave input signal by controlling their head-neck angular position (position tracking) or the magnitude of isometric force generated against a force sensor by the neck musculature (force tracking) in the sagittal plane. Position stabilization required subjects to maintain an upright head position while pseudorandom perturbations were applied to the upper body using a robotic platform. Within-day and between-day reliability of the frequency response curves were assessed using coefficients of multiple correlations (CMC). Root mean square error (RMSE) and mean bandpass signal energy, were computed for each task and between-day reliability was calculated using intra-class correlation coefficients (ICC). Within- and between-day CMCs for the position and force tracking tasks were all ≥0.96, while CMCs for position stabilization ranged from 0.72 to 0.82. ICCs for the position and force tracking tasks were all ≥0.93. For position stabilization, ICCs for RMSE and mean bandpass signal energy were 0.66 and 0.72, respectively. Measures of sagittal plane head-neck motor control using position tracking, position stabilization and force tracking tasks were demonstrated to be reliable.Copyright © 2014 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…