• Plos One · Jan 2016

    In Vivo MRI Measurement of Spinal Cord Displacement in the Thoracolumbar Region of Asymptomatic Subjects with Unilateral and Sham Straight Leg Raise Tests.

    • M Rade, M Könönen, J Marttila, M Shacklock, R Vanninen, M Kankaanpää, and O Airaksinen.
    • Kuopio University Hospital, Department of Physical and Rehabilitation Medicine, Kuopio, Finland.
    • Plos One. 2016 Jan 1; 11 (6): e0155927.

    BackgroundNormal displacement of the conus medullaris with unilateral and bilateral SLR has been quantified and the "principle of linear dependence" has been described.PurposeExplore whether previously recorded movements of conus medullaris with SLRs are i) primarily due to transmission of tensile forces transmitted through the neural tissues during SLR or ii) the result of reciprocal movements between vertebrae and nerves.Study DesignControlled radiologic study.MethodsTen asymptomatic volunteers were scanned with a 1.5T magnetic resonance (MR) scanner using T2 weighted spc 3D scanning sequences and a device that permits greater ranges of SLR. Displacement of the conus medullaris during the unilateral and sham SLR was quantified reliably with a randomized procedure. Conus displacement in response to unilateral and sham SLRs was quantified and the results compared.ResultsThe conus displaced caudally in the spinal canal by 3.54±0.87 mm (mean±SD) with unilateral (p≤.001) and proximally by 0.32±1.6 mm with sham SLR (p≤.542). Pearson correlations were higher than 0.99 for both intra- and inter-observer reliability and the observed power was 1 for unilateral SLRs and 0.054 and 0.149 for left and right sham SLR respectively.ConclusionsFour relevant points emerge from the presented data: i) reciprocal movements between the spinal cord and the surrounding vertebrae are likely to occur during SLR in asymptomatic subjects, ii) conus medullaris displacement in the vertebral canal with SLR is primarily due to transmission of tensile forces through the neural tissues, iii) when tensile forces are transmitted through the neural system as in the clinical SLR, the magnitude of conus medullaris displacement prevails over the amount of bone adjustment.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…