• Clin Pharmacokinet · Aug 2014

    Review

    A comprehensive review on the pharmacokinetics of antibiotics in interstitial fluid spaces in humans: implications on dosing and clinical pharmacokinetic monitoring.

    • Tony K L Kiang, Urs O Häfeli, and Mary H H Ensom.
    • Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada.
    • Clin Pharmacokinet. 2014 Aug 1; 53 (8): 695-730.

    AbstractThe objective of the current review was to provide an updated and comprehensive summary on pharmacokinetic data describing the distribution of antimicrobials into interstitial fluid (ISF) by comparing drug concentration versus time profiles between ISF and blood/plasma in healthy individuals and/or diseased populations. An extensive literature search identified 55 studies detailing 87 individual comparisons. For each antibiotic (antibacterial) (or antibiotic class), we comment on dosing implications based on tissue ISF distribution characteristics and determine the suitability of conducting clinical pharmacokinetic monitoring (CPM) using a previously published scoring algorithm. Using piperacillin as an example, there is evidence supporting different degrees of drug penetration into the ISF of different tissues. A higher dose of piperacillin may be required to achieve an adequate ISF concentration in soft tissue infections. To achieve these higher doses, alternative administration regimens such as intravenous infusions may be utilized. Data also suggest that piperacillin can be categorized as a 'likely suitable' agent for CPM in ISF. Regression analyses of data from the published studies, including protein binding, molecular weight, and predicted partition coefficient (using XlogP3) as dependent variables, indicated that protein binding was the only significant predictor for the extent of drug distribution as determined by ratios of the area under the concentration-time curve between muscle ISF/total plasma (R (2) = 0.65, p < 0.001) and adipose ISF/total plasma (R (2) = 0.48, p < 0.004). Although recurrent limitations (i.e., small sample size, lack of statistical comparisons, lack of steady-state conditions, high individual variability) were identified in many studies, these data are still valuable and allowed us to generate general dosing guidelines and assess the suitability of using ISF for CPM.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.