-
J Zhejiang Univ Sci B · Aug 2005
Background correction in near-infrared spectra of plant extracts by orthogonal signal correction.
- Hai-bin Qu, Dan-lin Ou, and Yi-yu Cheng.
- Pharmaceutical Informatics Institute, Zhejiang University, Hangzhou 310027, China.
- J Zhejiang Univ Sci B. 2005 Aug 1; 6 (8): 838-43.
AbstractIn near-infrared (NIR) analysis of plant extracts, excessive background often exists in near-infrared spectra. The detection of active constituents is difficult because of excessive background, and correction of this problem remains difficult. In this work, the orthogonal signal correction (OSC) method was used to correct excessive background. The method was also compared with several classical background correction methods, such as offset correction, multiplicative scatter correction (MSC), standard normal variate (SNV) transformation, de-trending (DT), first derivative, second derivative and wavelet methods. A simulated dataset and a real NIR spectral dataset were used to test the efficiency of different background correction methods. The results showed that OSC is the only effective method for correcting excessive background.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.