• Int. J. Infect. Dis. · Jun 2014

    Endocannabinoid system activation contributes to glucose metabolism disorders of hepatocytes and promotes hepatitis C virus replication.

    • Li-Jie Sun, Jian-Wu Yu, Lin Wan, Xiao-Yu Zhang, Yu-Guang Shi, and Mo-Yang Chen.
    • Department of Infectious Diseases, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin 150086, China.
    • Int. J. Infect. Dis. 2014 Jun 1; 23: 75-81.

    BackgroundInsulin resistance is highly prevalent in patients with chronic hepatitis C (CHC) and to some extent accounts for fibrosis and reducing viral eradication. Activated cannabinoid 1 receptor (CB1R) signaling has been implicated in the development of phenotypes associated with insulin resistance and steatosis. We investigated the role of the endocannabinoid system in glucose metabolism disorders induced by hepatitis C virus (HCV) replication.MethodsHuman hepatic stellate cells (HSC; LX-2 cells) were co-cultured with Huh-7.5 cells or Huh-7.5 cells harboring HCV replicon (replicon cells). Endocannabinoid levels were then measured by liquid chromatography/mass spectrometry. The expression of CB1R and its downstream glucose metabolism genes in hepatocytes were determined by real-time PCR and Western blot. Glucose uptake by hepatocytes and glucose production were measured. Glucose metabolism tests and measurements of HCV RNA levels and nonstructural protein 5A (NS5A) levels were taken after treatment with CB1R agonist arachidonyl-2-chloroethanolamide (ACEA) or antagonist AM251.ResultsCompared to the co-culture with Huh-7.5 cells, the level of 2-arachidonoylglycerol (2-AG) and the CB1R mRNA and protein levels increased in the co-culture of LX-2 cells with replicon cells. The activation of CB1R decreased AMP-activated protein kinase (AMPK) phosphorylation, inhibited cell surface expression of glucose transporter 2 (GLUT2), and suppressed cellular glucose uptake; furthermore, it increased cyclic AMP response element-binding protein H (CREBH), then up-regulated phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) genes and down-regulated the glucokinase (GK) gene, thus promoting glucose production. Interferon treatment restored the aforementioned changes. CB1R antagonist improved glucose metabolism disorders by an increase in glucose uptake and a decrease in glucose production, and inhibited HCV replication.ConclusionsHCV replication may not only increase the 2-AG content, but may also up-regulate the expression of CB1R of hepatocytes, then change the expression profile of glucose metabolism-related genes, thereby causing glucose metabolism disorders of hepatocytes and promoting HCV replication. Treatment with CB1R antagonist improved glucose metabolism disorders and inhibited viral genome replication.Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.