• Lung · Jan 1991

    Effect of edema on segmental vascular resistance in isolated perfused rat lungs.

    • R Hillyard, J Anderson, and J U Raj.
    • Department of Pediatrics, Memorial Medical Center, Long Beach, California.
    • Lung. 1991 Jan 1; 169 (2): 97-108.

    AbstractWe have determined the effect of hydrostatic edema on total and segmental vascular resistances in the rat lung. Lungs of 12 adult rats, body weight 515 +/- 42 g, were isolated and perfused with blood. To investigate the role of vasoactivity on edema effects, we studied two groups of lungs; group I (n = 6) were untreated and group II (n = 6) were treated with papaverine hydrochloride to paralyze the vasculature. Initially blood flow was adjusted to keep pulmonary artery pressure approximately 15 cmH2O, left atrial and airway pressures being 8 and 7 cmH2O, respectively, and then kept unchanged thereafter (18 +/- 3 ml/kg/min). Hydrostatic edema was induced by raising venous pressure and pulmonary artery pressure measured continuously. In 4 lungs from each group, during baseline and after the development of severe edema, we partitioned the pulmonary circulation into arteries, microvessels, and veins by measuring pressures in 20-50 microns diameter subpleural arterioles and venules with the micropipette-Servonull method. Baseline total vascular resistance was similar in the two groups. Interstitial and early alveolar edema did not affect pulmonary vascular pressures. With severe edema (W/D ratio: 17 +/- 2), pressures in pulmonary artery and arterioles increased significantly in both groups; venular pressures did not change. Total resistance increased by 250% in group I and by 224% in group II lungs. Arterial resistance increased 3-5-fold in both groups, as did microvascular resistance. Venous resistances also increased in both groups, although to a lesser extent. The increase in total and segmental vascular resistances was not significantly different in the two groups of lungs. We conclude that in isolated rat lungs only severe edema results in an increase in total vascular resistance, mainly due to an increase in arterial and microvascular resistances, with a smaller increase in venous resistance. This appears to be a mechanical effect of edema on the vasculature and not a result of active vasomotion.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.