• Critical care medicine · Sep 2015

    Glibenclamide Improves Survival and Neurological Outcome After Cardiac Arrest in Rats.

    • Kaibin Huang, Yong Gu, Yafang Hu, Zhong Ji, Shengnan Wang, Zhenzhou Lin, Xing Li, Zuoshan Xie, and Suyue Pan.
    • All authors: Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
    • Crit. Care Med. 2015 Sep 1;43(9):e341-9.

    ObjectivesGlibenclamide confers neuroprotection in animal models as well as in retrospective clinical studies. This study determines whether glibenclamide improves outcome after cardiac arrest in rats.DesignProspective randomized laboratory study.SettingUniversity research laboratory.SubjectsMale Sprague-Dawley rats (n = 126).InterventionsRats successfully resuscitated from 8-minute asphyxial cardiac arrest were randomized to glibenclamide or vehicle group. Rats in the glibenclamide group were intraperitoneally administered glibenclamide with a loading dose of 10 μg/kg at 10 minutes and a maintenance dose of 1.2 μg at 6, 12, 18, and 24 hours after return of spontaneous circulation, whereas rats in the vehicle group received equivalent volume of vehicle solution.Measurements And Main ResultsSurvival was recorded every day, and neurologic deficit scores were assessed at 24, 48, and 72 hours and 7 days after return of spontaneous circulation (n = 22 in each group). Results showed that glibenclamide treatment increased 7-day survival rate, reduced neurologic deficit scores, and prevented neuronal loss in the hippocampal cornu ammonis 1 region. To investigate the neuroprotective effects of glibenclamide in acute phase, we observed neuronal injury at 24 hours after return of spontaneous circulation and found that glibenclamide significantly decreased the rate of neuronal necrosis and apoptosis. In addition, glibenclamide reduced the messenger RNA expression of tumor necrosis factor-α and monocyte chemoattractant protein-1 in the cortex after return of spontaneous circulation. Furthermore, the sulfonylurea receptor 1 and transient receptor potential M4 heteromers, the putative therapeutic targets of glibenclamide, were up-regulated after cardiac arrest and cardiopulmonary resuscitation, indicating that they might be involved in neuroprotective effect of glibenclamide.ConclusionsGlibenclamide treatment substantially improved survival and neurologic outcome throughout a 7-day period after return of spontaneous circulation. The salutary effects of glibenclamide were associated with suppression of neuronal necrosis and apoptosis, as well as inflammation in the brain.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…