• IEEE Trans Biomed Eng · Mar 2006

    Continuous cardiac output monitoring by peripheral blood pressure waveform analysis.

    • Ramakrishna Mukkamala, Andrew T Reisner, Horacio M Hojman, Roger G Mark, and Richard J Cohen.
    • Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA. rama@egr.msu.edu
    • IEEE Trans Biomed Eng. 2006 Mar 1; 53 (3): 459-67.

    AbstractA clinical method for monitoring cardiac output (CO) should be continuous, minimally invasive, and accurate. However, none of the conventional CO measurement methods possess all of these characteristics. On the other hand, peripheral arterial blood pressure (ABP) may be measured reliably and continuously with little or no invasiveness. We have developed a novel technique for continuously monitoring changes in CO by mathematical analysis of a peripheral ABP waveform. In contrast to the previous techniques, our technique analyzes the ABP waveform over time scales greater than a cardiac cycle in which the confounding effects of complex wave reflections are attenuated. The technique specifically analyzes 6-min intervals of ABP to estimate the pure exponential pressure decay that would eventually result if pulsatile activity abruptly ceased (i.e., after the high frequency wave reflections vanish). The technique then determines the time constant of this exponential decay, which equals the product of the total peripheral resistance and the nearly constant arterial compliance, and computes proportional CO via Ohm's law. To validate the technique, we performed six acute swine experiments in which peripheral ABP waveforms and aortic flow probe CO were simultaneously measured over a wide physiologic range. We report an overall CO error of 14.6%.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.