• Tex Heart Inst J · Jan 2012

    Comparative Study

    Tuna cornea as biomaterial for cardiac applications.

    • Roberto Parravicini, Flavio Cocconcelli, Alessandro Verona, Valeriano Parravicini, Enrico Giuliani, and Alberto Barbieri.
    • Department of Cardiovascular Surgery, University of Modena and Reggio Emilia, 41124 Modena, Italy. roberto.parravicini@unimore.it
    • Tex Heart Inst J. 2012 Jan 1; 39 (2): 179-83.

    AbstractAmong available biomaterials, cornea is almost completely devoid of cells and is composed only of collagen fibers oriented in an orderly pattern, which contributes to low antigenicity. Thunnus thynnus, the Atlantic bluefin tuna, is a fish with large eyes that can withstand pressures of approximately 10 MPa. We evaluated the potential of this tuna cornea in cardiac bioimplantation. Eyes from freshly caught Atlantic bluefin tuna were harvested and preserved in a fixative solution. Sterilized samples of corneal stroma were embedded in paraffin and stained with hematoxylin and eosin, and the histologic features were studied. Physical and mechanical resistance tests were performed in comparison with bovine pericardial strips and porcine mitral valves. Corneal material was implanted subcutaneously in 7 rats, to evaluate in vivo calcification rates. Mitral valves made from tuna corneal leaflets were implanted in 9 sheep. We found that the corneal tissue consisted only of parallel collagen fibers without evidence of vascular or neural structures. In tensile strength, the tuna corneal specimens were substantially similar to bovine pericardium. After 23 days, the rat-implanted samples showed no calcium or calcium salt deposition. Hydrodynamic and fatigue testing of valve prototypes yielded acceptable functional and long-term behavioral results. In the sheep, valvular performance was stable during the 180-day follow-up period, with no instrumental sign of calcification at the end of observation. We conclude that low antigenicity and favorable physical properties qualify tuna cornea as a potential material for durable bioimplantation. Further study is warranted.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…