• J Vasc Interv Radiol · Jul 2012

    Indirect computed tomography venography of the lower extremities using single-source dual-energy computed tomography: advantage of low-kiloelectron volt monochromatic images.

    • Naveen M Kulkarni, Dushyant V Sahani, Gaurav S Desai, and Sanjeeva P Kalva.
    • Department of Imaging, Division of Abdominal Imaging & Intervention, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.
    • J Vasc Interv Radiol. 2012 Jul 1; 23 (7): 879-86.

    PurposeTo study the performance of dual-energy indirect computed tomography (CT) venography from single-source dual-energy CT in the assessment of lower extremity deep venous thrombosis (DVT).Materials And MethodsIn a retrospective study, 110 patients suspected to have pulmonary embolism (PE) underwent dual-energy CT venography on a single-source dual-energy CT scanner as a part of CT pulmonary angiography protocol at 3 minutes after injection of contrast material. Two radiologists evaluated 50-kiloelectron volt (keV) and 70-keV monochromatic images reconstructed from a dual-energy CT scan for image quality, image noise, venous contrast, and confidence level in interpretation for DVT using a scale of 1-5. In addition, a combined 50-keV and 70-keV data set was assessed for confidence level in image interpretation. Attenuation, contrast-to-noise ratio (CNR), and objective noise were measured in bilateral common femoral and popliteal veins. Data were analyzed using Student t test and Wilcoxon rank sum test. Radiation dose was measured for dual-energy CT venography protocol.ResultsA diagnosis of DVT was made in 8 of 110 patients (7.27%). The subjective image quality was comparable between 50-keV and 70-keV images (4.3 vs 4.5; P > .05). The subjective venous contrast opacification (4.7 vs 3.5; P = .0036) and confidence (4.8 vs 3.9; P = .0028) in image interpretation were superior at 50 keV. Confidence level for interpretation on combined 50-keV and 70-keV series (score 4.7) was similar to that for 50-keV series (score 4.8). Compared with 70-keV data, 50-keV data yielded 90% increase in intravascular CT attenuation (207.4 Hounsfield units [HU] ± 39.0 vs 106.8 HU ± 7.6; P <.0001) and higher CNR (10.7 ± 4.07 vs 7.2 ± 4.1; P = .0001) of the deep veins. However, objective noise at 50 keV was higher (14.8 HU vs 6.5 HU; P = .0031). Because of inadequate contrast opacification, 6% of CT venography studies were deemed suboptimal for rendering a diagnostic interpretation on 70-keV images, but these images were considered acceptable at 50 keV. The mean effective radiation dose for the dual-energy CT venography examination was 4.2 mSv.ConclusionsOptimal image quality with substantially higher venous attenuation is provided by 50-keV monochromatic images from dual-energy CT venography acquisition compared with 70-keV images. The 50-keV monochromatic images increase the confidence in the image interpretation of DVT and decrease the number of indeterminate studies.Copyright © 2012 SIR. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…