• J Neural Transm · Jan 2009

    The genomic profile of the cerebral cortex after closed head injury in mice: effects of minocycline.

    • Peter J Crack, Jodee Gould, Nicole Bye, Shelley Ross, Uğur Ali, Mark D Habgood, Cristina Morganti-Kossman, Norman R Saunders, Paul J Hertzog, and Victorian Neurotrauma Research Group.
    • Department of Pharmacology, University of Melbourne, Parkville, VIC, 3010, Australia. pcrack@unimelb.edu.au
    • J Neural Transm. 2009 Jan 1; 116 (1): 1-12.

    AbstractMicroarray analysis was used to delineate gene expression patterns and profile changes following traumatic brain injury (TBI) in mice. A parallel microarray analysis was carried out in mice with TBI that were subsequently treated with minocycline, a drug proposed as a neuroprotectant in other neurological disorders. The aim of this comparison was to identify pathways that may be involved in secondary injury processes following TBI and potential specific pathways that could be targeted with second generation therapeutics for the treatment of neurotrauma patients. Gene expression profiles were measured with the compugen long oligo chip and real-time PCR was used to validate microarray findings. A pilot study of effect of minocycline on gene expression following TBI was also carried out. Gene ontology comparison analysis of sham TBI and minocycline treated brains revealed biological pathways with more genes differentially expressed than predicted by chance. Among 495 gene ontology categories, the significantly different gene ontology groups included chemokines, genes involved in cell surface receptor-linked signal transduction and pro-inflammatory cytokines. Expression levels of some key genes were validated by real-time quantitative PCR. This study confirms that multiple regulatory pathways are affected following brain injury and demonstrates for the first time that specific genes and molecular networks are affected by minocycline following brain injury.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.