• Bmc Med Inform Decis · Jan 2012

    Identification of pneumonia and influenza deaths using the Death Certificate Pipeline.

    • Kailah Davis, Catherine Staes, Jeff Duncan, Sean Igo, and Julio C Facelli.
    • Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, USA.
    • Bmc Med Inform Decis. 2012 Jan 1; 12: 37.

    BackgroundDeath records are a rich source of data, which can be used to assist with public surveillance and/or decision support. However, to use this type of data for such purposes it has to be transformed into a coded format to make it computable. Because the cause of death in the certificates is reported as free text, encoding the data is currently the single largest barrier of using death certificates for surveillance. Therefore, the purpose of this study was to demonstrate the feasibility of using a pipeline, composed of a detection rule and a natural language processor, for the real time encoding of death certificates using the identification of pneumonia and influenza cases as an example and demonstrating that its accuracy is comparable to existing methods.ResultsA Death Certificates Pipeline (DCP) was developed to automatically code death certificates and identify pneumonia and influenza cases. The pipeline used MetaMap to code death certificates from the Utah Department of Health for the year 2008. The output of MetaMap was then accessed by detection rules which flagged pneumonia and influenza cases based on the Centers of Disease and Control and Prevention (CDC) case definition. The output from the DCP was compared with the current method used by the CDC and with a keyword search. Recall, precision, positive predictive value and F-measure with respect to the CDC method were calculated for the two other methods considered here. The two different techniques compared here with the CDC method showed the following recall/ precision results: DCP: 0.998/0.98 and keyword searching: 0.96/0.96. The F-measure were 0.99 and 0.96 respectively (DCP and keyword searching). Both the keyword and the DCP can run in interactive form with modest computer resources, but DCP showed superior performance.ConclusionThe pipeline proposed here for coding death certificates and the detection of cases is feasible and can be extended to other conditions. This method provides an alternative that allows for coding free-text death certificates in real time that may increase its utilization not only in the public health domain but also for biomedical researchers and developers.Trial RegistrationThis study did not involved any clinical trials.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.