• Am. J. Hum. Genet. · Sep 2014

    CCDC151 mutations cause primary ciliary dyskinesia by disruption of the outer dynein arm docking complex formation.

    • Rim Hjeij, Alexandros Onoufriadis, Christopher M Watson, Christopher E Slagle, Nikolai T Klena, Gerard W Dougherty, Małgorzata Kurkowiak, Niki T Loges, Christine P Diggle, Nicholas F C Morante, George C Gabriel, Kristi L Lemke, You Li, Petra Pennekamp, Tabea Menchen, Franziska Konert, June Kehlet Marthin, Dorus A Mans, Stef J F Letteboer, Claudius Werner, Thomas Burgoyne, Cordula Westermann, Andrew Rutman, Ian M Carr, Christopher O'Callaghan, Eduardo Moya, Eddie M K Chung, UK10K Consortium, Eamonn Sheridan, Kim G Nielsen, Ronald Roepman, Kerstin Bartscherer, Rebecca D Burdine, Cecilia W Lo, Heymut Omran, and Hannah M Mitchison.
    • Department of General Pediatrics, University Children's Hospital Muenster, 48149 Muenster, Germany.
    • Am. J. Hum. Genet. 2014 Sep 4; 95 (3): 257-74.

    AbstractA diverse family of cytoskeletal dynein motors powers various cellular transport systems, including axonemal dyneins generating the force for ciliary and flagellar beating essential to movement of extracellular fluids and of cells through fluid. Multisubunit outer dynein arm (ODA) motor complexes, produced and preassembled in the cytosol, are transported to the ciliary or flagellar compartment and anchored into the axonemal microtubular scaffold via the ODA docking complex (ODA-DC) system. In humans, defects in ODA assembly are the major cause of primary ciliary dyskinesia (PCD), an inherited disorder of ciliary and flagellar dysmotility characterized by chronic upper and lower respiratory infections and defects in laterality. Here, by combined high-throughput mapping and sequencing, we identified CCDC151 loss-of-function mutations in five affected individuals from three independent families whose cilia showed a complete loss of ODAs and severely impaired ciliary beating. Consistent with the laterality defects observed in these individuals, we found Ccdc151 expressed in vertebrate left-right organizers. Homozygous zebrafish ccdc151(ts272a) and mouse Ccdc151(Snbl) mutants display a spectrum of situs defects associated with complex heart defects. We demonstrate that CCDC151 encodes an axonemal coiled coil protein, mutations in which abolish assembly of CCDC151 into respiratory cilia and cause a failure in axonemal assembly of the ODA component DNAH5 and the ODA-DC-associated components CCDC114 and ARMC4. CCDC151-deficient zebrafish, planaria, and mice also display ciliary dysmotility accompanied by ODA loss. Furthermore, CCDC151 coimmunoprecipitates CCDC114 and thus appears to be a highly evolutionarily conserved ODA-DC-related protein involved in mediating assembly of both ODAs and their axonemal docking machinery onto ciliary microtubules.Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.