• J Manag Care Spec Pharm · Oct 2014

    Comparative Study

    Evaluation of an outpatient pharmacy clinical services program on adherence and clinical outcomes among patients with diabetes and/or coronary artery disease.

    • Michele M Spence, Abir F Makarem, Stacie L Reyes, Lisa L Rosa, Courtney Nguyen, Elizabeth A Oyekan, and Alan T Kiyohara.
    • Kaiser Permanente Southern California, 12254 Bellflower Blvd., Downey, CA 90242,USA. michele.m.spence@kp.org.
    • J Manag Care Spec Pharm. 2014 Oct 1; 20 (10): 1036-45.

    BackgroundPoor medication adherence among patients with chronic diseases can result in complications and increased health care expenditures. An outpatient pharmacy clinical service (OPCS) program targeted nonadherent diabetes mellitus (DM) and/or coronary artery disease (CAD) patients with hemoglobin A1c (HbA1c) and/or low-density lipoprotein cholesterol (LDL-C) outside clinical goals. Pharmacists engaged identified patients with a face-to-face B-SMART consult, a consultation methodology to identify Barriers to medication adherence, work on Solutions to identified barriers, Motivate patients, recommend Adherence tools, reinforce the pharmacist-patient Relationship, and Triage if needed, to other services such as health education to improve outcomes. ObjectivesTo (a) assess rates of medication adherence and clinical outcomes in the OPCS program compared with usual care in an integrated health care system and (b) estimate return-on-investment (ROI) from this intervention. MethodsThis retrospective cohort study used data from the Kaiser Permanente Southern California region to identify patients who received OPCS consultations and usual care patients from March 2009 through December 2010, with 1 year of follow-up from the initial consult (index date). Four patients from usual care were matched to each patient in the OPCS program and were assigned the same index date as the matching OPCS patient. Additional selection criteria were applied after matching. All patients were required to have a medication possession ratio (MPR) of less than  0.80 for their diabetes or dyslipidemia oral medications 1 year prior to the index date, indicating lower adherence to the prescribed therapy. Diabetic patients or dyslipidemic patients had to have a HbA1c or LDL-C lab result outside of clinical goals prior to the index date to be included in the study, respectively. Adherence outcomes as well as clinical outcomes were measured 12 months after the index date using chi-square tests for differences in percentages and t-tests for differences in means. The ROI was based on a cost-avoidance model that compared the cost of the OPCS program with the cost savings gained through reduced hospitalizations and emergency department (ED) visits. The diabetes and dyslipidemia cohorts were combined for the ROI analysis.ResultsDemographic and clinical characteristics at baseline were similar between the OPCS group (n = 1,480) and usual care group (n = 1,477). Among patients with diabetes, a higher percentage in the OPCS group than in the usual care group were adherent with their diabetes medications (53.5% vs. 37.4%, P = 0.001). There was no significant difference in average MPR between groups. However, patients in the OPCS group had a greater increase in mean MPR (0.19 vs. 0.15, P = 0.024); were less likely to discontinue taking their diabetes medications (11.7% vs. 35.5%, P = 0.001); and were more likely to have a timely first fill after the index date (34.8% vs. 12.9%, P = 0.001). The average number of days to the first fill after the index date was significantly shorter for the OPCS group (79.3 vs. 156.3, P = 0.001). Regarding clinical outcomes, patients with diabetes in the OPCS group had a lower mean HbA1c (8.48 vs. 8.80, P = 0.024) and a greater reduction in HbA1c (-1.25 vs. -0.75, P = 0.001) than in the usual care group. They were also less likely to have an ED visit (1.67% vs. 4.21%, P = 0.040), but there was no significant difference in the percentage of patients with a hospital admission. Among patients with dyslipidemia, the mean MPR was significantly lower for the OPCS group than the usual care group (0.70 vs. 0.74, P = 0.003). There were no significant differences in the percentage of adherent patients or the change in mean MPR from baseline. However, the OPCS group was significantly less likely to discontinue dyslipidemia medications (21.1% vs. 35.4%, P  less than  0.001) and more likely to have a timely fill (28.3% vs. 15.1%, P  less than  0.001). The average days to first fill after the index date was 106.9 for the OPCS group, compared with 162.6 for the usual care group (P  less than  0.001). The OPCS group had a lower mean LDL-C (105.1 vs. 110.4, P = 0.001) and a greater reduction in LDL-C (-30.5 vs. -22.4, P = 0.001) than the usual care group. There were no significant differences in the percentage of patients with an ED visit or a hospital admission. In terms of ROI, assuming that 58% of hospitalizations and 8.5% of ED visits incurred in the usual care group were avoidable, approximately $5.79 could be saved for every dollar spent on the OPCS program. ConclusionBy engaging nonadherent patients to restart their DM or lipid medications during a face-to-face consult, the OPCS pharmacist was able to influence and improve medication adherence and clinical outcomes, particularly among patients with diabetes. A positive ROI was demonstrated.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.