• J. Neurosci. Res. · Aug 2003

    Comparative Study

    Unusual topographical pattern of proximal astrogliosis around a cortical devascularizing lesion.

    • Kai Wang and Wolfgang Walz.
    • Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
    • J. Neurosci. Res. 2003 Aug 15; 73 (4): 497-506.

    AbstractClass II vessels were disrupted on the cortical surface of adult rats within a circular 5-mm-diameter area. This consistently resulted in the formation of a conical lesion by day 1, with a cystic cavity forming by day 21. Four markers were used to identify the glial response surrounding the lesion. The antibody used against S100beta marked the largest astrocytic pool in the gray matter of the cerebral cortex; only approximately 5% of astrocytes were glial fibrillary acidic protein (GFAP)(+) in control animals. GFAP served as a marker for distal reactive gliosis and vimentin (VIM) for proximal gliosis. Isolectin B4 was used as an additional marker to distinguish VIM(+) microglia from astrocytes inside the lesion area. Three immunohistochemically distinct areas of reactive astrocytes surrounding the lesion were found within 24 hr of injury and lasted through day 6. The first area, in contrast to focal traumatic injuries, consisted of a 196-microm-thick boundary layer of S100beta(+) cells immediately surrounding the lesion that never expressed GFAP or VIM by day 6. This boundary layer turns into a GFAP(+) glial limitans encasing the cystic cavity by day 21. A second unusual extended area around the base of the lesion reaching partly into the corpus callosum consisted of S100beta(+)/GFAP(+)/VIM(+) cells. This region appears to be compatible with the local or proximal gliotic response usually found completely surrounding other focal-type injuries. The proximal response at the base of the lesion developed over the first 3 days in the following sequence: S100beta(+)/GFAP(-)/VIM(-) to S100beta(+)/GFAP(+)/VIM(-) to S100beta(+)/GFAP(+)/VIM(+). Ninety percent of the astrocytes in this area express VIM. This is very high compared with findings in stab-wound preparations, where only 10% of astrocytes (surrounding entire lesion) are found to be VIM(+). A third region, consistent with a remote or distal reactive gliotic response, demonstrated staining for S100beta and had increased GFAP contents throughout the neocortical hemisphere. Cells in this region were never found to be VIM(+). Among S100beta(+) cells close to the boundary region, more than 80% expressed detectable GFAP by 2 days after lesioning. S100beta(+) cells 1 mm more laterally (distal to lesion) did not express GFAP to the same level until day 6. Thus, we find three immunohistochemically distinct populations of reactive astrocytes surrounding the focal ischemic lesion. In contrast to the case for stab-wound traumatic injury, the response closest to and surrounding the lesion did not up-regulate GFAP or VIM by day 6. The proximal response was, instead, more remote and only at the base of the lesion, extending partly into the corpus callosum.Copyright 2003 Wiley-Liss, Inc.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.