• Brain research · May 1994

    Effects of neonatal capsaicin treatment on descending modulation of spinal nociception from the rostral, medial medulla in adult rat.

    • M Zhuo and G F Gebhart.
    • Department of Pharmacology, University of Iowa, College of Medicine, Iowa City 52242-1109.
    • Brain Res. 1994 May 9; 645 (1-2): 164-78.

    AbstractStimulation-produced modulation from the rostral, medial medulla (RMM) on the spinal nociceptive tail-flick (TF) reflex and on lumbar spinal dorsal horn neuron responses to noxious cutaneous stimuli was studied in adult rats treated as neonates with capsaicin or vehicle. In vehicle-treated rats (n = 7), both descending facilitatory and inhibitory influences on the TF reflex were produced from the RMM. At 11/23 sites in the RMM, electrical stimulation produced biphasic modulatory effects. Electrical stimulation facilitated the spinal nociceptive TF reflex at low intensities (5-25 microA) and inhibited the TF reflex at greater intensities (50-200 microA). The mean threshold intensity of stimulation to inhibit the TF reflex (cut-off time = 7.0 s) was 66 microA (n = 11). At 11 of 23 sites, electrical stimulation only inhibited the TF reflex; the mean threshold intensity of stimulation to inhibit the TF reflex was 50 microA (n = 11). At one stimulation site, electrical stimulation only facilitated the TF reflex at the intensities tested (5-100 microA). In capsaicin-treated rats (n = 6), the proportion of sites from which electrical stimulation only inhibited the TF reflex was significantly less (3/27 sites = 11%) than in vehicle-treated rats (11/23 = 48%). The threshold intensity of stimulation to inhibit the TF reflex from these three sites was 50 microA. The number of sites in RMM from which electrical stimulation only facilitated the TF reflex was significantly greater in capsaicin-treated rats (15/27 = 56%) than in vehicle-treated rats (1/23 = 4%). Neither the number of sites in RMM from which electrical stimulation produced biphasic modulatory effects on the TF reflex (48% and 33%, respectively) nor the intensities of stimulation or magnitudes of facilitation or inhibition of the TF reflex significantly differed between vehicle- and capsaicin-treated rats. In electrophysiological experiments, all units studied responded to non-noxious and noxious intensities of mechanical stimulation applied to the glabrous skin of the plantar surface of the ipsilateral hind foot and also to noxious heating of the skin (50 degrees C). The number of sites where electrical stimulation produced only facilitatory effects on responses of spinal dorsal horn neurons to noxious stimulation (thermal or mechanical) of the skin was significantly increased from 13% of the total sites in vehicle-treated rats to 40% in capsaicin-treated rats.(ABSTRACT TRUNCATED AT 400 WORDS)

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…