• Cancer · May 2013

    RET/PTC and PAX8/PPARγ chromosomal rearrangements in post-Chernobyl thyroid cancer and their association with iodine-131 radiation dose and other characteristics.

    • Rebecca J Leeman-Neill, Alina V Brenner, Mark P Little, Tetiana I Bogdanova, Maureen Hatch, Liudmyla Y Zurnadzy, Kiyohiko Mabuchi, Mykola D Tronko, and Yuri E Nikiforov.
    • Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
    • Cancer. 2013 May 15; 119 (10): 1792-9.

    BackgroundChildhood exposure to iodine-131 from the 1986 nuclear accident in Chernobyl, Ukraine, led to a sharp increase in papillary thyroid carcinoma (PTC) incidence in regions surrounding the reactor. Data concerning the association between genetic mutations in PTCs and individual radiation doses are limited.MethodsMutational analysis was performed on 62 PTCs diagnosed in a Ukrainian cohort of patients who were < 18 years old in 1986 and received 0.008 to 8.6 Gy of (131) I to the thyroid. Associations between mutation types and (131) I dose and other characteristics were explored.ResultsRET/PTC (ret proto-oncogene/papillary thyroid carcinoma) rearrangements were most common (35%), followed by BRAF (15%) and RAS (8%) point mutations. Two tumors carrying PAX8/PPARγ (paired box 8/peroxisome proliferator-activated receptor gamma) rearrangement were identified. A significant negative association with (131) I dose for BRAF and RAS point mutations and a significant concave association with (131) I dose, with an inflection point at 1.6 Gy and odds ratio of 2.1, based on a linear-quadratic model for RET/PTC and PAX8/PPARγ rearrangements were found. The trends with dose were significantly different between tumors with point mutations and rearrangements. Compared with point mutations, rearrangements were associated with residence in the relatively iodine-deficient Zhytomyr region, younger age at exposure or surgery, and male sex.ConclusionsThese results provide the first demonstration of PAX8/PPARγ rearrangements in post-Chernobyl tumors and show different associations for point mutations and chromosomal rearrangements with (131) I dose and other factors. These data support the relationship between chromosomal rearrangements, but not point mutations, and (131) I exposure and point to a possible role of iodine deficiency in generation of RET/PTC rearrangements in these patients.Copyright © 2013 American Cancer Society.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.