• J. Cereb. Blood Flow Metab. · May 2012

    Nitrative stress in cerebral endothelium is mediated by mGluR5 in hyperhomocysteinemia.

    • Jamie N Mayo, Richard S Beard, Tulin O Price, Cheng-Hung Chen, Michelle A Erickson, Nuran Ercal, William A Banks, and Shawn E Bearden.
    • Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA.
    • J. Cereb. Blood Flow Metab. 2012 May 1; 32 (5): 825-34.

    AbstractHyperhomocysteinemia (HHcy) disrupts nitric oxide (NO) signaling and increases nitrative stress in cerebral microvascular endothelial cells (CMVECs). This is mediated, in part, by protein nitrotyrosinylation (3-nitrotyrosine; 3-NT) though the mechanisms by which extracellular homocysteine (Hcy) generates intracellular 3-NT are unknown. Using a murine model of mild HHcy (cbs(+/-) mouse), we show that 3-NT is significantly elevated in cerebral microvessels with concomitant reductions in serum NO bioavailability as compared with wild-type littermate controls (cbs(+/+)). Directed pharmacology identified a receptor-dependent mechanism for 3-NT formation in CMVECs. Homocysteine increased expression of inducible NO synthase (iNOS) and formation of 3-NT, both of which were blocked by inhibition of metabotropic glutamate receptor-5 (mGluR5) with the specific antagonist 2-methyl-6-(phenylethynyl) pyridine hydrochloride. Activation of mGluR5 is both sufficient and necessary to drive the nitrative stress because direct activation using the mGluR5-specific agonist (RS)-2-chloro-5-hydroxyphenylglycine also increased iNOS expression and 3-NT formation while knockdown of mGluR5 receptor expression by short hairpin RNA (shRNA) blocked their increase in response to Hcy. Nitric oxide derived from iNOS was required for Hcy-mediated formation of 3-NT because the effect was blocked by 1400W. These results provide the first evidence for a receptor-dependent process that explains how plasma Hcy levels control intracellular nitrative stress in cerebral microvascular endothelium.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.