• Gastroenterology · Nov 2012

    Hedgehog controls hepatic stellate cell fate by regulating metabolism.

    • Yuping Chen, Steve S Choi, Gregory A Michelotti, Isaac S Chan, Marzena Swiderska-Syn, Gamze F Karaca, Guanhua Xie, Cynthia A Moylan, Francesca Garibaldi, Richard Premont, Hagir B Suliman, Claude A Piantadosi, and Anna Mae Diehl.
    • Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.
    • Gastroenterology. 2012 Nov 1; 143 (5): 1319-29.e1-11.

    Background & AimsThe pathogenesis of cirrhosis, a disabling outcome of defective liver repair, involves deregulated accumulation of myofibroblasts derived from quiescent hepatic stellate cells (HSCs), but the mechanisms that control transdifferentiation of HSCs are poorly understood. We investigated whether the Hedgehog (Hh) pathway controls the fate of HSCs by regulating metabolism.MethodsMicroarray, quantitative polymerase chain reaction, and immunoblot analyses were used to identify metabolic genes that were differentially expressed in quiescent vs myofibroblast HSCs. Glycolysis and lactate production were disrupted in HSCs to determine if metabolism influenced transdifferentiation. Hh signaling and hypoxia-inducible factor 1α (HIF1α) activity were altered to identify factors that alter glycolytic activity. Changes in expression of genes that regulate glycolysis were quantified and localized in biopsy samples from patients with cirrhosis and liver samples from mice following administration of CCl(4) or bile duct ligation. Mice were given systemic inhibitors of Hh to determine if they affect glycolytic activity of the hepatic stroma; Hh signaling was also conditionally disrupted in myofibroblasts to determine the effects of glycolytic activity.ResultsTransdifferentiation of cultured, quiescent HSCs into myofibroblasts induced glycolysis and caused lactate accumulation. Increased expression of genes that regulate glycolysis required Hh signaling and involved induction of HIF1α. Inhibitors of Hh signaling, HIF1α, glycolysis, or lactate accumulation converted myofibroblasts to quiescent HSCs. In diseased livers of animals and patients, numbers of glycolytic stromal cells were associated with the severity of fibrosis. Conditional disruption of Hh signaling in myofibroblasts reduced numbers of glycolytic myofibroblasts and liver fibrosis in mice; similar effects were observed following administration of pharmacologic inhibitors of Hh.ConclusionsHedgehog signaling controls the fate of HSCs by regulating metabolism. These findings might be applied to diagnosis and treatment of patients with cirrhosis.Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.