• Pharmacol. Res. · Oct 2009

    Cooperative N-methyl-D-aspartate (NMDA) receptor antagonism and mu-opioid receptor agonism mediate the methadone inhibition of the spinal neuron pain-related hyperactivity in a rat model of neuropathic pain.

    • Maria Luisa Sotgiu, Maurizio Valente, Riccardo Storchi, Giancarlo Caramenti, and Gabriele E M Biella.
    • Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Milan, Italy. maria.luisa.sotgiu@ibfm.cnr.it
    • Pharmacol. Res. 2009 Oct 1; 60 (4): 284-90.

    AbstractMethadone (Racemic methadone) exerts its antinociceptive effect by activation of mu-opioid receptors and/or blockade of NMDA receptors. The aim of this study is to determine whether the methadone analgesic effect on neuropathic pain is achieved only by the agonism of the mu-opioid receptors or cooperatively with the antagonism of the NMDA receptors. To this purpose, in rats with neuropathic pain model of chronic constriction of one sciatic nerve (CCI rats), we administered methadone before or after opioid receptor blockade with naloxone and checked its effects on the spinal Wide Dynamic Range (WDR) neuron dynamics in three experimental conditions: on the spontaneous and noxious evoked neuronal activities in control rats (sham operated and naïve); on iontophoretic NMDA induced neuronal hyperactivity in intact rats; on pain-related spontaneous and noxious evoked hyperactivities in CCI rats. The results, as from the spike-frequency analysis, show that: (i) in control rats, methadone inhibits the noxious evoked neuronal activity and naloxone prevents or reverses about 94% of methadone inhibitory effect; (ii) in intact rats, pretreated with naloxone, methadone reduces the NMDA induced neuronal hyperactivity; (iii) in CCI rats, methadone inhibits the neuronal spontaneous and noxious evoked hyperactivities, and naloxone prevents or reverses about 60% of methadone inhibitory effect. These findings allow to conclude that methadone inhibition of the noxious evoked activity in normal rats is achieved predominantly through the agonism of the mu-opioid receptors, while the inhibition of the pain-related hyperactivity in rats with signs of neuropathic pain (CCI rats), involves also the NMDA receptors antagonism.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.