-
Anesthesia and analgesia · May 1999
S(+)-ketamine, but not R(-)-ketamine, reduces postischemic adherence of neutrophils in the coronary system of isolated guinea pig hearts.
- A Szekely, B Heindl, S Zahler, P F Conzen, and B F Becker.
- Institute of Anesthesiology, Ludwig-Maximillians-University, Munich, Germany.
- Anesth. Analg. 1999 May 1; 88 (5): 1017-24.
UnlabelledPolymorphonuclear neutrophils (PMN) play a crucial role in the initiation of reperfusion injury. In a previous study, we found that ketamine reduced the postischemic adherence of PMN to the intact coronary system of isolated guinea pig hearts. Because ketamine is a racemic mixture (1:1) of two optical enantiomers, we looked for possible differences in action between the stereoisomers. Seventy-six guinea pig hearts were perfused in the "Langendorff" mode under conditions of constant flow (5 mL/min) using modified Krebs-Henseleit buffer. After 15 min of global warm ischemia, freshly isolated human PMN (10(6)) were infused as a bolus into the coronary system during the second minute of reperfusion. PMN adhesion was expressed as the numeric difference between PMN recovered in the effluent and those applied. Series A hearts received 5 microM S(+), 5 microM R(-), or 10 microM racemic ketamine starting 20 min before ischemia and during reperfusion. In Series B hearts, 10 microM nitro-L-arginine, an inhibitor of NO synthase, was added to the perfusate. In Series C, PMN were preincubated for 15 min with 5 microM S(+)- or R(-)-ketamine. Coronary vascular leak was assessed by measuring the rate of formation of transudate on the epicardial surface. Ischemia/reperfusion without anesthetics increased coronary PMN adherence from 25.5% +/-2.3% (basal) to 35.3%+/-1.5% of the number applied. S(+)-ketamine reduced postischemic adherence in each series (A, 25.5%+/-5.1%; B, 22.5%+/-1.7%; C, 25.3%+/-7.7%), as did racemate (A, 26.4%+/-3.7%). Although 5 microM R(-)-ketamine had no effect on adhesion (A, 30.5%+/-6.7%; B, 34.3%+/-5.1%; C, 34.3%+/-4.3%), it significantly increased vascular leak in the presence of NOLAG. These findings indicate stereoselective differences in biological action between the two ketamine isomers: S(+)-ketamine inhibited PMN adherence, R(-)-ketamine worsened coronary vascular leak in reperfused isolated hearts.ImplicationsIn this study, we demonstrated stereoselective differences in the biologic action of the two ketamine isomers in an animal model of myocardial ischemia. Polymorphonuclear neutrophil adherence to the coronary vasculature after ischemia was inhibited by S(+)-ketamine, whereas R(-)-ketamine increased coronary vascular fluid leak.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.