• J. Biol. Chem. · Jul 2014

    Histone modifications are associated with Δ9-tetrahydrocannabinol-mediated alterations in antigen-specific T cell responses.

    • Xiaoming Yang, Venkatesh L Hegde, Roshni Rao, Jiajia Zhang, Prakash S Nagarkatti, and Mitzi Nagarkatti.
    • From the Department of Pathology, Microbiology, and Immunology, School of Medicine, and.
    • J. Biol. Chem. 2014 Jul 4; 289 (27): 18707-18.

    AbstractMarijuana is one of the most abused drugs due to its psychotropic effects. Interestingly, it is also used for medicinal purposes. The main psychotropic component in marijuana, Δ(9)-tetrahydrocannabinol (THC), has also been shown to mediate potent anti-inflammatory properties. Whether the immunomodulatory activity of THC is mediated by epigenetic regulation has not been investigated previously. In this study, we employed ChIP-Seq technology to examine the in vivo effect of THC on global histone methylation in lymph node cells of mice immunized with a superantigen, staphylococcal enterotoxin B. We compared genome-wide histone H3 Lys-4, Lys-27, Lys-9, and Lys-36 trimethylation and histone H3 Lys-9 acetylation patterns in such cells exposed to THC or vehicle. Our results showed that THC treatment leads to the association of active histone modification signals to Th2 cytokine genes and suppressive modification signals to Th1 cytokine genes, indicating that such a mechanism may play a critical role in the THC-mediated switch from Th1 to Th2. At the global level, a significant portion of histone methylation and acetylation regions were altered by THC. However, the overall distribution of these histone methylation signals among the genomic features was not altered significantly by THC, suggesting that THC activates the expression of a subset of genes while suppressing the expression of another subset of genes through histone modification. Functional classification of these histone marker-associated genes showed that these differentially associated genes were involved in various cellular functions, from cell cycle regulation to metabolism, suggesting that THC had a pleiotropic effect on gene expression in immune cells. Altogether, the current study demonstrates for the first time that THC may modulate immune response through epigenetic regulation involving histone modifications.© 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.