• Shock · May 2006

    Hydroxyethyl starch 130 kd/0.4 and albumin improve CVVH biocompatibility whereas gelatin and hydroxyethyl starch 200 kd/0.5 lead to adverse side effects of CVVH in anesthetized pigs.

    • Juliane K Unger, Claudia Haltern, Jana-Bara Kobela, Roland Francis, Rolf Rossaint, and Christian Grosse-Siestrup.
    • Department of Comparative Medicine and Experimental Animal Sciences, Charité Campus Virchow-Klinikum, Universitätsmedizin Berlin, Berlin, Germany. juliane.unger@charite.de
    • Shock. 2006 May 1; 25 (5): 533-45.

    UnlabelledBoth fluid management and renal replacement therapies play a fundamental role in the treatment of critically ill patients. In a recent in vitro study, we have shown specific interactions of different colloids and the hemocompatibility of hemofilters. The present study was performed to compare the five most common fluids for volume resuscitation, i.e., normal saline (SAL), hydroxyethyl starch 130 kd/0.4 (HES130), hydroxyethyl starch 200 kd/0.5 (HES200), albumin (ALB), and gelatin (GEL) with respect to their interaction with continuous venovenous hemofiltration (CVVH) in anesthetized domestic pigs.MethodsAnimals (n = 63) were allocated randomly to the fluid type and the respective subgroups, which were divided into control and CVVH groups (n = 6 ndash; 7 per group). Bolus infusion of group specific fluid was followed by a bolus of heparin and the initiation of hemofiltration in CVVH groups. Thereafter, fluids were infused at constant rates, and heparin application was adjusted to keep the activated clotting time at 200 to 250 s. Hemodynamics, airway pressures, pulmonary gas exchange, diuresis, creatinine clearance, and blood cell counts were investigated during the entire procedure (10 ndash; 12 hours).ResultsBasics of in vivo effects of SAL, HES130, and ALB were not altered during CVVH. HES130 and ALB enabled stable hemocompatibility, diuresis, and hemodynamics in the respective groups. In contrast, organ functions were significantly different between control and CVVH groups when animals were treated with GEL or HES200. In particular, during CVVH, HES200 led to reduced platelet counts, deteriorated hemodynamics, and increasing airway pressures during CVVH. GEL led to increasing airway pressures, a decrease in pulmonary gas exchange, deteriorated hemodynamics, altered renal histomorphology, reduced platelet counts, and reduced hemoglobin.ConclusionsDirect in vivo effects of colloids in anaesthetized and ventilated pigs are not predictable for their effects during CVVH. Interaction between CVVH and every volume substitute occur in a highly specific manner. This observation could be helpful to explain contradictory study results and should be considered for future study designs.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.