• Int. J. Mol. Med. · May 2012

    Oxymatrine attenuates bleomycin-induced pulmonary fibrosis in mice via the inhibition of inducible nitric oxide synthase expression and the TGF-β/Smad signaling pathway.

    • Lei Liu, Wei Lu, Zhuang Ma, and Zhenhua Li.
    • Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China.
    • Int. J. Mol. Med. 2012 May 1; 29 (5): 815-22.

    AbstractOxymatrine (OM) is an alkaloid extracted from the Chinese herb Sophora flavescens Ait. with a variety of pharmacological activities. The aim of this study was to investigate the preventive effects of OM on bleomycin (BLM)-induced pulmonary fibrosis (PF) and to further explore the underlying mechanisms. C57BL/6 mice were randomly assigned to five groups: the saline sham group; the BLM group, in which mice were endotracheally instilled with BLM (3.0 mg/kg); and the BLM plus OM groups, in which OM was given to mice daily (10, 20 or 40 mg/kg) one day after BLM instillation for 21 days. The bronchoalveolar lavage fluid (BALF) and lung tissues were collected at 15 and 22 days post BLM administration, respectively. Lung tissues were stained with hematoxylin and eosin (H&E) for histological evaluation. Levels of tumor necrosis factor (TNF)-α, interleukin-6 (IL-6) and nitric oxide (NO) in mouse BALF were measured, as well as myeloperoxidase (MPO) activity and malondialdehyde (MDA) content in lung homogenates. The inducible nitric oxide synthase (iNOS) expression in the lung tissues was determined by immunohistochemical staining, quantitative real-time PCR and western blot analysis. Moreover, the expression of transforming growth factor (TGF)-β1, Smad2, Smad3, p-Smad2 and p-Smad3 were also detected. We found that OM improved BLM-induced lung pathological changes, inhibited MPO activity and reduced MDA levels in a dose-dependent manner. OM also dose-dependently inhibited the release of TNF-α and IL-6, and decreased the expression of iNOS in lung tissues and thus prevented NO release in response to BLM challenge. In addition, OM decreased the expression of TGF-β1, p-Smad2 and p-Smad3, which are all important members of the TGF-β/Smad signaling pathway. Our study provides evidence that OM significantly ameliorated BLM-induced PF in mice via the inhibition of iNOS expression and the TGF-β/Smad pathway.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.