• Microvascular research · Mar 2010

    Validation of near-infrared laser speckle imaging for assessing microvascular (re)perfusion.

    • Rick Bezemer, Eva Klijn, Mostafa Khalilzada, Alexandre Lima, Michal Heger, Jasper van Bommel, and Can Ince.
    • Department of Intensive Care, Erasmus MC University Hospital Rotterdam, Rotterdam, The Netherlands. R.Bezemer@amc.uva.nl
    • Microvasc. Res. 2010 Mar 1; 79 (2): 139-43.

    AbstractThe present study was conducted to compare laser speckle imaging (LSI) with sidestream dark field (SDF) imaging (i.e., capillary microscopy) so as to validate the use of LSI for assessing microvascular (re)perfusion. For this purpose, LSI and SDF measurements were performed on the human nail fold during gradual occlusion of the upperarm circulation to modify nail fold perfusion under controlled circumstances. Additionally, a vascular occlusion test was performed to test the ability of LSI to detect rapid changes in tissue perfusion during reactive hyperemia and a hyperthermic challenge was performed to measure LSI perfusion at maximum functional capillary density. Normalized LSI measurements (i.e., normalized to baseline is 100%) were shown to correlate positively with normalized SDF measurements (Pearson's r=0.92). This was supported by linear regression analysis (slope of 1.01, R(2)=0.85, p<0.001). During the vascular occlusion test, LSI perfusion decreased from 307+/-90 AU (baseline) to 42+/-8 AU (ischemia). Peak perfusion during reperfusion was 651+/-93 AU (212% of baseline), which had returned to baseline after 2 min. Hyperthermia increased LSI perfusion from 332+/-90 AU to 1067+/-256 AU (321% of baseline). The main finding was that changes in perfusion as measured by LSI correlated well with changes in capillary red blood cell velocities as measured by SDF imaging during controlled reduction of the (micro)vascular perfusion. It was further shown that LSI is capable of measuring tissue perfusion at high temporal and spatial resolution. In conclusion, LSI can be employed to accurately quantitate microvascular reactivity following ischemic and hyperthermic challenges.Copyright 2009 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…